Efficient time series data classification using sliding window technique based improved association rule mining with enhanced support vector machine

Author:

Senthil D,Suseendran G

Abstract

Time series analysis is an important and complex problem in machine learning and statistics. In the existing system, Support Vector Machine (SVM) and Association Rule Mining (ARM) is introduced to implement the time series data. However it has issues with lower accuracy and higher time complexity. Also it has issue with optimal rules discovery and segmentation on time series data. To avoid the above mentioned issues, in the proposed research Sliding Window Technique based Improved ARM with Enhanced SVM (SWT-IARM with ESVM) is proposed. In the proposed system, the preprocessing is performed using Modified K-Means Clustering (MKMC). The indexing process is done by using R-tree which is used to provide faster results. Segmentation is performed by using SWT and it reduces the cost complexity by optimal segments. Then IARM is applied on efficient rule discovery process by generating the most frequent rules. By using ESVM classification approach, the rules are classified more accurately.  

Publisher

Science Publishing Corporation

Subject

Hardware and Architecture,General Engineering,General Chemical Engineering,Environmental Engineering,Computer Science (miscellaneous),Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3