Optimal Path Planning using Hybrid Bat Algorithm and Cuckoo Search

Author:

Sood Monica,Sahil Verma Dr.,Kumar Panchal Vinod,Kavita Dr.

Abstract

Path planning is key research topic in the field of robotics research, transportation, bioinformatics, virtual prototype designing, gaming, computer aided designs, and virtual reality estimation. In optimal path planning, it is important to determine the collision free optimal and shortest path. There may be various aspects to determine the optimal path based on workspace environment and obstacle types. In this research work, optimal path is determined based on the workspace environment having static obstacles and unknown environment area. A hybrid approach of meta-heuristic algorithm of Bat Algorithm (BA) and Cuckoo Search (CS) is used to determine the optimal path from defined source to destination. For experimentation, case study area of Alwar region, Rajasthan is considered which consist of urban and vegetation area. The reason for the selection of BA and CS for the path planning is the wide application and success of implementation of these concepts in the field of robotics and path planning. The consideration of individual BA for path planning can lead to problem of trapping between local optima. This obligates us to hybridize the concept of BA with some other efficient problem solving concept like CS. The hybridized concept of BA and CS is initially tested with standard benchmarks functions, after that considered for the application of path planning. Results of hybrid path planning concept are compared with individual CS and BA concepts in terms of simulation time and minimum number of iteration required to achieve the optimal path from defined source to destination. The evaluated results comparison of hybrid approach with individual concepts indicates the dominance of proposed hybrid concept in terms of standard benchmarks functions and other parameters as well.  

Publisher

Science Publishing Corporation

Subject

Hardware and Architecture,General Engineering,General Chemical Engineering,Environmental Engineering,Computer Science (miscellaneous),Biotechnology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of Metaverse in Education;2024 IEEE 1st Karachi Section Humanitarian Technology Conference (KHI-HTC);2024-01-08

2. Security Challenges in Mobile Cloud Computing;2024 IEEE 1st Karachi Section Humanitarian Technology Conference (KHI-HTC);2024-01-08

3. Assessing the Effectiveness of Fingerprint Authentication in Preventing Fraud During Financial Transactions;2024 IEEE 1st Karachi Section Humanitarian Technology Conference (KHI-HTC);2024-01-08

4. Predicting Depression with Social Media Images;2024 IEEE 1st Karachi Section Humanitarian Technology Conference (KHI-HTC);2024-01-08

5. Virtual Assistant in Health Care;2024 IEEE 1st Karachi Section Humanitarian Technology Conference (KHI-HTC);2024-01-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3