Flow blockage in a transonic axial flow compressor: simulation analysis under distorted conditions

Author:

Srinivas G,Raghunandana K,Satish Shenoy B

Abstract

Today the aircraft industry is looking for faster and safer engines for both civil and military applications. The performance of all different types of air breathing engines depends on the amount of mass flow rate of air entering and hot gas ejecting out from the engine. Thrust is the key role for any engine performance. To achieve more thrust all the turbo machinery components like axial fan, axial flow compressor and axial flow turbine should function effectively. This paper is primarily dealing about one of the turbo machinery component, axial flow compressor performance where the study is more focused on flow blockage formation under distorted phenomena. The complete blade boundary layer formation and related flow numerical theory are discussed in detail, accordingly the boundary conditions were set to have better numerical simulations using ANSYS tool. To find the flow blockage formation suitable turbulence model was coded using the well know compressible equations. The flow blockage between the rotor and stator of the compressor stage was calculated and also validated with that of experimental data effectively. The flow simulation results also revealed that the performance parameters under the modern engine transonic speed from Mach 0.8 to 1.2 under the distorted conditions are better for aeromechanical features.  

Publisher

Science Publishing Corporation

Subject

Hardware and Architecture,General Engineering,General Chemical Engineering,Environmental Engineering,Computer Science (miscellaneous),Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3