Design and Analysis of Robot PID Controller Using Digital Signal Processing Techniques

Author:

A. Asker Mshari,S. Gaeid Khalaf,N. Tawfeeq Nada,K. Zain Humam,I. Kauther Ali,Q Abdullah Thamir

Abstract

Recently robotic is a playing vital role in the life In our modern society, the usage of robotic arms are increasing and much of the work in the industry is now performed by robots. As robots begin to behave like humans in an intelligent manner, control system becomes a major concern. In this paper, design and analyses of  the pick and place robot due to control, the forearm, wrist, desired turntable and desired bicep is introduced to construct a closed system with four degrees of freedom (4DOFs). The main performance specifications are the accuracy and stability of the input system for obtaining a good system performance. Implementation of the control system using PID parameters for stability, minimum steady state error, minimum overshoot and faster system response has been carried out. The design  of two degree of freedom PID(2DoFPID) to control robotic arm along with first order low pass filter(LPF) to compensate the unwanted signal is improved. To be able to implement such a precise and effective system, feedback system has to be made to improve the overall performance specifications. The digital signal processing controller (Arduino Uno) is used as it is active, cheap , it has open source code and easy to use in the software and hardware applications.Experimental set up developed in addition to the Matlab/Simulink implementation of the complete system. The results and the communication signals test ensure smooth operation of the control system and the effectiveness of the proposed algorithm.   

Publisher

Science Publishing Corporation

Subject

Hardware and Architecture,General Engineering,General Chemical Engineering,Environmental Engineering,Computer Science (miscellaneous),Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reduction of Signal Overshooting Caused by Cutoff Frequency Changing in the Controlled Digital Butterworth Low Pass Filter;2022 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM);2022-05-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3