An allotment of H1B work visa in USA using machine learning

Author:

Thakur Pooja,Singh Mandeep,Singh Harpreet,Singh Rana Prashant

Abstract

H1B work visas are utilized to contract profoundly talented outside specialists at low wages in America which help firms and impact U.S economy unfavorably. In excess of 100,000 individuals for every year apply tight clamp for higher examinations and also to work and number builds each year. Selections of foreigners are done by lottery system which doesn’t follow any full proofed method and so results cause a loophole between US-based and foreign workers. We endeavor to examine petitions filled from 2015 to 2017 with the goal that a superior prediction model need to develop using machine learning which helps to foresee the aftereffect of the request of ahead of time which shows whether an appeal to is commendable or not. In this work, we use seven classification models Decision tree, C5.0, Random Forest, Naïve Bayes, Neural Network and SVM which predict the status of a petition as certified, denied, withdrawal or certified with-drawls. The predictions of these models are checked on accuracy parameter. It is found that C5.0 outperform with the best accuracy of 94.62 as a single model but proposed model gives better results of 95.4 accuracies which is built by machine ensemble method and this is validated by 10 fold cross-validation. 

Publisher

Science Publishing Corporation

Subject

Hardware and Architecture,General Engineering,General Chemical Engineering,Environmental Engineering,Computer Science (miscellaneous),Biotechnology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. H1B Visa Analysis using GANs;International Journal of Advanced Research in Science, Communication and Technology;2023-08-27

2. An Analytical Study of Regression Techniques towards H-1B Visa Prediction;2023 7th International Conference on Intelligent Computing and Control Systems (ICICCS);2023-05-17

3. A Hybrid Machine Learning Model Approach to H-1B Visa;2021 3rd International Conference on Electrical, Control and Instrumentation Engineering (ICECIE);2021-11-27

4. Success of H1-B VISA Using ANN;Machine Learning and Information Processing;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3