Efficient Detection and Classification of Diabetic Foot Ulcer Tissue using PSO Technique

Author:

K S Babu,Sabut Sukanta,D K Nithya

Abstract

Assessment of a diabetic wound is very much important to determine the healing status. Foot ulcer is most commonly observed problem of diabetic patients. A diabetic wound is observed for approximately 15 per cent of diabetic patients. Diabetic wound is a major concern of diabetes mellitus. The foot ulcer is the very much harm full problem related to diabetes mellitus. Here particle swarm optimization (PSO) based optimization technique is used for segmentation of diabetic wounds and classifying into three types of tissues i.e. granulation, necrotic and slough. After the segmentation the different textural features are extracted through Gray Level Co-occurrence Matrix (GLCM). All these features were then fed to two different classifiers, Naive bayes and Hoeffding tree for classifying the tissue types. The experimental results showed that the classification accuracy, sensitivity, specificity are 90.90%, 100%, 87.5% by Naive bayes, and 81.81%, 100%, 77.7% by Hoeffding tree respectively. Hence the PSO optimization techniques along with Naive bayes classifier could be used for the effective segmentation of diabetic wound images.  

Publisher

Science Publishing Corporation

Subject

Hardware and Architecture,General Engineering,General Chemical Engineering,Environmental Engineering,Computer Science (miscellaneous),Biotechnology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3