Author:
Belina V.J. Sara S,Kalaiselvi K
Abstract
Kidney Disease and kidney failure is the one of the complicated and challenging health issues regarding human health. Without having any symptoms few diseases are detected in later stages which results in dialysis. Advanced excavating technologies can always give various possibilities to deal with the situation by determining important realations and associations in drilling down health related data. The prediction accuracy of classification algorithms depends upon appropriate Feature Selection (FS) algorithms decrease the number of features from collection of data. FS is the procedure of choosing the most relevant features, removing irrelevant features. To identify the Chronic Kidney Disease (CKD), Hybrid Wrapper and Filter based FS (HWFFS) algorithm is proposed to reduce the dimension of CKD dataset. Filter based FS algorithm is performed based on the three major functions: Information Gain (IG), Correlation Based Feature Selection (CFS) and Consistency Based Subset Evaluation (CS) algorithms respectively. Wrapper based FS algorithm is performed based on the Enhanced Immune Clonal Selection (EICS) algorithm to choose most important features from the CKD dataset. The results from these FS algorithms are combined with new HWFFS algorithm using classification threshold value. Finally Support Vector Machine (SVM) based prediction algorithm be proposed in order to predict CKD and being evaluated on the MATLAB platform. The results demonstrated with the purpose of the SVM classifier by using HWFFS algorithm provides higher prediction rate in the diagnosis of CKD when compared to other classification algorithms.
Publisher
Science Publishing Corporation
Subject
Hardware and Architecture,General Engineering,General Chemical Engineering,Environmental Engineering,Computer Science (miscellaneous),Biotechnology
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献