Ensemble swarm behaviour based feature selection and support vector machine classifier for chronic kidney disease prediction

Author:

Belina V.J. Sara S,Kalaiselvi K

Abstract

Kidney Disease and kidney failure is the one of the complicated and challenging health issues regarding human health. Without having any symptoms few diseases are detected in later stages which results in dialysis. Advanced excavating technologies can always give various possibilities to deal with the situation by determining important realations and associations in drilling down health related data.   The prediction accuracy of classification algorithms depends upon appropriate Feature Selection (FS) algorithms decrease the number of features from collection of data. FS is the procedure of choosing the most relevant features, removing irrelevant features. To identify the Chronic Kidney Disease (CKD), Hybrid Wrapper and Filter based FS (HWFFS) algorithm is proposed to reduce the dimension of CKD dataset.   Filter based FS algorithm is performed based on the three major functions: Information Gain (IG), Correlation Based Feature Selection (CFS) and Consistency Based Subset Evaluation (CS) algorithms respectively. Wrapper based FS algorithm is performed based on the Enhanced Immune Clonal Selection (EICS) algorithm to choose most important features from the CKD dataset.  The results from these FS algorithms are combined with new HWFFS algorithm using classification threshold value.  Finally Support Vector Machine (SVM) based prediction algorithm be proposed in order to predict CKD and being evaluated on the MATLAB platform. The results demonstrated with the purpose of the SVM classifier by using HWFFS algorithm provides higher prediction rate in the diagnosis of CKD when compared to other classification algorithms.  

Publisher

Science Publishing Corporation

Subject

Hardware and Architecture,General Engineering,General Chemical Engineering,Environmental Engineering,Computer Science (miscellaneous),Biotechnology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3