Migrating From Data Mining to Big Data Mining

Author:

Bathla Gourav,Aggarwal Himanshu,Rani Rinkle

Abstract

Data mining is one of the most researched fields in computer science. Several researches have been carried out to extract and analyse important information from raw data. Traditional data mining algorithms like classification, clustering and statistical analysis can process small scale of data with great efficiency and accuracy. Social networking interactions, business transactions and other communications result in Big data. It is large scale of data which is not in competency for traditional data mining techniques. It is observed that traditional data mining algorithms are not capable for storage and processing of large scale of data. If some algorithms are capable, then response time is very high. Big data have hidden information, if that is analysed in intelligent manner can be highly beneficial for business organizations. In this paper, we have analysed the advancement from traditional data mining algorithms to Big data mining algorithms. Applications of traditional data mining algorithms can be straight forward incorporated in Big data mining algorithm. Several studies have analysed traditional data mining with Big data mining, but very few have analysed most important algortihsm within one research work, which is the core motive of our paper. Readers can easily observe the difference between these algorthithms with  pros and cons. Mathemtics concepts are applied in data mining algorithms. Means and Euclidean distance calculation in Kmeans, Vectors application and margin in SVM and Bayes therorem, conditional probability in Naïve Bayes algorithm are real examples.  Classification and clustering are the most important applications of data mining. In this paper, Kmeans, SVM and Naïve Bayes algorithms are analysed in detail to observe the accuracy and response time both on concept and empirical perspective. Hadoop, Mapreduce etc. Big data technologies are used for implementing Big data mining algorithms. Performace evaluation metrics like speedup, scaleup and response time are used to compare traditional mining with Big data mining.  

Publisher

Science Publishing Corporation

Subject

Hardware and Architecture,General Engineering,General Chemical Engineering,Environmental Engineering,Computer Science (miscellaneous),Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Big Data Analysis of China’s Sports Nutrition Food Market Based on Information Technology;2022 International Conference on Artificial Intelligence in Everything (AIE);2022-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3