Intelligent Observer-Based Feedback Linearization for Autonomous Quadrotor Control

Author:

M. Lazim Izzuddin,Rashid Husain Abdul,Adilla Mohd Subha Nurul,Ariffanan Mohd Basri Mohd

Abstract

The presence of disturbances can cause instability to the quadrotor flight and can be dangerous especially when operating near obstacles or other aerial vehicles. In this paper, a hybrid controller called state feedback with intelligent disturbance observer-based control (SF-iDOBC) is developed for trajectory tracking of quadrotor in the presence of time-varying disturbances, e.g. wind. This is achieved by integrating artificial intelligence (AI) technique with disturbance observer-based feedback linearization to achieve a better disturbance rejection capability. Here, the observer estimates the disturbances acting on the quadrotor, while AI technique using the radial basis function neural network (RBFNN) compensates the disturbance estimation error. To improve the error compensation of RBFNN, the k-means clustering method is used to find the optimal centers of the Gaussian activation function. In addition, the weights of the RBFNN are tuned online using the derived adaptation law based on the Lyapunov method, which eliminates the offline training. In the simulation experiment conducted, a total of four input nodes and five hidden neurons are used to compensate for the error. The results obtained demonstrate the effectiveness and merits of the theoretical development. 

Publisher

Science Publishing Corporation

Subject

Hardware and Architecture,General Engineering,General Chemical Engineering,Environmental Engineering,Computer Science (miscellaneous),Biotechnology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Control Schemes for Quadrotor UAV: Taxonomy and Survey;ACM Computing Surveys;2023-11-27

2. Fuzzy Logic Control for Quadrotor Micro-aerial Vehicle Altitude and Attitude Stabilization;Lecture Notes in Electrical Engineering;2022

3. Adaptive Super Twisting Sliding Mode Control of Quadrotor MAV;Lecture Notes in Electrical Engineering;2022

4. Position and Attitude Control of Quadrotor MAV Using Sliding Mode Control with Tanh Function;Enabling Industry 4.0 through Advances in Mechatronics;2022

5. Intelligent Disturbance Compensator for Quadrotor flight;2021 9th International Conference on Systems and Control (ICSC);2021-11-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3