FUNCTIONAL STABILITY OF THE INVERTED PENDULUM AND ITS RELATION TO UNCREWED AERIAL VEHICLE WINGS THROUGH SYSTEM MATHEMATICAL MODELING AND SIMULATION

Author:

Al-Dosary Naji Mordi NajiORCID,Zolotorevskiy Alex Greg,Schram Cassidy Paul

Abstract

The flight instability of an uncrewed aerial vehicle (UAV) can be considered critical, and investigations of stability can be compared to the study of the stabilization of an inverted pendulum. This study investigated the stability of two dynamic systems, represented by an inverted pendulum and a simple approximation of an aircraft wing surface exposed to aerodynamic forces. This study illustrates the advantages of time-domain simulation for solving the differential equation of motion. The simulation used the Euler integration approach for various system parameters. Essentially, an aircraft in flight must constantly maintain pitch stability, which, in practical considerations, can be compared to the mechanism of a rotary motion represented by the up-swinging motion of an inverted pendulum. The pendulum may conserve the same concept as an aircraft’s acceleration, as both are affected by the same gravity and acceleration forces, in which the longitudinal stability of the aircraft must be ensured immediately upon takeoff. An inverted pendulum and a UAV aircraft system simulation were developed with basic MATLAB software. The inverted pendulum simulation showed that as the value of the spring’s stiffness at the limit of stability (klim) increased, the system became more convergent and, as a result, more stable. The stiffness of the spring at the limit of stability, klim = 32.69 N m-1 (i.e., equivalent to an initial angular rotation θ = 5 °), and the system’s stability were observed up to the value of klim = 179.79 N m-1, which resulted in an unstable short initial period. In addition, for the aircraft’s wing, the damping coefficient (clim) value was in the range of clim ≥ 10,000 N s m-1. Therefore, with the damping ratio ζ being equal to zero, the system vibrated consistently at its natural frequency (wn), never deviating drastically to become unstable.

Publisher

Colegio de Postgraduados

Subject

Plant Science,General Environmental Science,Agronomy and Crop Science,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3