Physical and Chemical Parameters of Emulsifiers and Their Effect on the Process of Food Emulsion Formation

Author:

Tereshchuk Lyubov1,Zagorodnikov Konstantin2,Starovoitova Kseniya1,Viushinskij Pavel3

Affiliation:

1. Kemerovo State University

2. Moscow State University of Food Production

3. LLC Zelenye linii

Abstract

Introduction. Modern food science needs new research of food emulsifiers, their composition, properties and effect on the structural characteristics of emulsions. It looks for modern technological solutions on how to select proper emulsifiers and their mixes to produce emulsions with different mass fractions of fat. The research objective was to study the effect of physical and chemical indicators of surfactants on the properties of food emulsions, as well as to develop practical recommendations for the selection of surfactants for various types of products. Study objects and methods. The research featured model dairy fat emulsions and laboratory-made vegetable oil, as well as hard and soft mono- and diglycerides of fatty acids and lecithins. The emulsifiers were used to determine the melting point, fatty acid composition, iodine number, and solid triglyceride content at various temperatures. The melting point of emulsifiers was determined by fixing the melting temperature in a capillary oven. To identify the fatty acid composition, the methyl esters of fatty acids were subjected to the chromatogram method. After that, the separated components and their quantity were determined by the area of the peaks. The content of solid triglycerides in the emulsifiers was determined by the method of nuclear magnetic resonance. The hydrophilic-lipophilic balance was obtained from the manufacturer's specifications. Results and discussion. The solid mono- and diglycerides appeared to have a high content of stearic and palmitic acids. Oleic acid predominated in soft monoglycerides; unsaturated fatty acids (linolenic and oleic) also predominated in the monoglycerides/lecithin complex emulsifier. Solid monoglycerides had a high content of solid triglycerides at 35°C (82.93%), which correlated with the high melting point (80°C) and the lowest iodine number (3 mg I2/100 g) of all the samples. The optimal ratio of vegetable oil and the emulsifier was defined empirically. The emulsifiers were dissolved in refined deodorized vegetable oil at 5–7°C above the melting point of the emulsifier. The resulting ratios were between 6:1 and 10:1. The samples of creamy vegetable spreads were obtained using the studied emulsifiers and their compositions in different doses and ratios. The crystallization temperature and phase transition time were determined when studying the process of emulsion overcooling. The article introduces a list of technological and physicochemical indicators of emulsifiers: the fatty acid composition, the degree of saturation, the melting point, and the content of solid triglycerides. By finding out the physicochemical parameters of emulsifiers, producers can vary the ratio of the components of emulsifying compositions to achieve the desired properties of food emulsions. The hydrophilic-lipophilic balance also proved to be an important index since the proportion of hydrophilic and hydrophobic groups in surfactants affects the type of emulsions and makes it possible to adjust the fat content of the finished product. Conclusion. The research results can expand the theoretical foundations of food emulsions. The article contains scientifically grounded recommendations on how to select optimal surfactants. The research opens up prospects for further studies of emulsifiers and their effect on the quality of finished products.

Publisher

Kemerovo State University

Subject

Industrial and Manufacturing Engineering,Economics, Econometrics and Finance (miscellaneous),Food Science

Reference28 articles.

1. Арасова Л. И., Тагиева Т. Г., Завадская И. М. К вопросу оценки эффективности пищевых ПАВ для эмульсионной продукции масложирового ассортимента // Вестник Всероссийского научно-исследовательского института жиров. 2019. № 1–2. С. 39–43., Tarasova LI, Tagijeva TG, Zavadskaja IM. To the question of evaluation of food SAS efficiency for the emulsion products of oil and fat product range. Vestnik of the All-Russia Scientific Research Institute of Fats. 2019;(1–2):39–43. (In Russ.).

2. Tereshchuk L. V., Starovoytova K. V., Ivashina O. A. Practical aspects of the use of emulsifiers in manufacturing emulsion fat-and-oil products // Foods and Raw Materials. 2018. Vol. 6. № 1. P. 30–39. https://doi.org/10.21603/2308-4057-2018-1-30-39., Tereshchuk LV, Starovoytova KV, Ivashina OA. Practical aspects of the use of emulsifiers in manufacturing emulsion fat-and-oil products. Foods and Raw Materials. 2018;6(1):30–39. https://doi.org/10.21603/2308-4057-2018-1-30-39.

3. Топникова Е. В., Лепилкина О. В., Коноплева А. А. Влияние эмульгаторов на реологические свойства спредов // Переработка молока. 2014. Т. 179. № 9. С. 44–46., Topnikova EV, Lepilkina OV, Konopleva AA. Vliyanie ehmulʹgatorov na reologicheskie svoystva spredov [Effect of emulsifiers on the rheological properties of spreads]. Milk Processing. 2014;179(9):44–46. (In Russ.).

4. Monoacylglycerols in dairy recombined cream: II. The effect on partial coalescence and whipping properties / E. Fredrick // Food Research International. 2013. Vol. 51. № 2. P. 936–945. https://doi.org/10.1016/j.foodres.2013.02.006., Fredrick E, Heyman B, Moens K, Fischer S, Verwijlen T, Moldenaers P, et al. Monoacylglycerols in dairy recombined cream: II. The effect on partial coalescence and whipping properties. Food Research International. 2013;51(2):936–945. https://doi.org/10.1016/j.foodres.2013.02.006.

5. Fredrick E., Walstra P., Dewettinck K. Factors governing partial coalescence in oil-in-water emulsions // Advances in Colloid and Interface Science. 2010. Vol. 153. № 1–2. P. 30–42. https://doi.org/10.1016/j.cis.2009.10.003., Fredrick E, Walstra P, Dewettinck K. Factors governing partial coalescence in oil-in-water emulsions. Advances in Colloid and Interface Science. 2010;153(1–2):30–42. https://doi.org/10.1016/j.cis.2009.10.003.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hybrid Gel as a Substitute for Hard Fats in Confectionery;Food Processing: Techniques and Technology;2023-03-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3