Cooling Caramel in Ethyl Alcohol: Constructing a Mathematical Model

Author:

Khvostov Anatoly1,Magomedov Gazibeg2,Ryazhskikh Viktor3,Plotnikova Inessa2,Zhuravlev Aleksey1,Magomedov Magomed2

Affiliation:

1. Military Educational and Scientific Centre of the Air Force N.E. Zhukovsky and Y.A. Gagarin Air Force Academy

2. Voronezh State University of Engineering Technologies

3. Voronezh State Technical University

Abstract

Introduction. The process of air-cooling caramel remains one of the most complicated issues of contemporary food industry, since it is time-consuming and requires multi-level cooling units. Therefore, the development of an innovative method of cooling caramel in “cold” potable ethanol is an urgent task the modern food science has to solve. The method op-timizes and intensifies the technological process, as it reduces production areas by eliminating some technological stages and complex units of metal-intensive and energyintensive equipment. It gives caramel antiseptic properties and a perfectly smooth, shiny, and dry surface. Study objects and methods. The research objective was to develop a fundamentally new and promising caramel technology. The experimental studies on the production and cooling were performed in a mixing and forming multi-unit with a high-performance cooling chamber. The chamber had functions of automatic measurements and control of the main parameters of the cooling process. The research used “cold” potable ethanol. Results and discussion. The paper introduces a mathematical model of the process of cooling caramel in ethanol. It includes heat transfer processes in alcohol, in the caramel mass, and on their border. The model was based on equations of transient heat conduction in a sphere. The process of heat exchange with the environment, i.e. alcohol, was characterized by the coefficient of heat transfer from the sphere. The model parameters included dynamic viscosity, density, thermal conductivity coefficient, and specific heat capacity. Based on the experimental data, the parameters were ap-proximated as a function of temperature by a cubic polynomial. Conclusion. The developed mathematical model made it possible to estimate the radial temperature distribution of caramel in the form of a sphere during its convective cooling in ethanol. The model also predicted the change in the average volume temperature of the caramel and energy costs depending on the cooling period, the flow speed of the ethanol, the thermophysical properties of the caramel and the cooling agent. The proposed mathematical model can be used to calculate the required consumption of ethanol for cooling and backwater of the caramel production line.

Publisher

Kemerovo State University

Subject

Industrial and Manufacturing Engineering,Economics, Econometrics and Finance (miscellaneous),Food Science

Reference27 articles.

1. Дейнека, И. Г. Автоматизированная линия производства карамели с переслойными начинками / И. Г. Дейнека, Т. Л. Риполь-Сарагоси, Г. Б. Бушкова // Наукові 14 праці НУХТ. – 2015. – Т. 21, № 1. – С. 7–14., Dejneka IG, Ripol-Saragosi TL, Bushkova GB. Automated production line of caramel with interbedded fillings. Scientific Works of NUFT. 2015;21(1):7–14. (In Russ.).

2. Минифай, Б. У. Шоколад, конфеты, карамель и другие кондитерские изделия / Б. У. Минифай. – СПб. : Профессия, 2008. – 816 с., Minifie B. Chocolate, cocoa and confectionery: science and technology. St. Petersburg: Professija; 2008. 816 p. (In Russ.).

3. Носенко, С. М. Оборудование кондитерского производства XXI века / С. М. Носенко, С. В.Чувахин. – М. : ДеЛи плюс, 2017. – 332 с., Nosenko SM, Chuvakhin SV. Oborudovanie konditerskogo proizvodstva XXI veka [Equipment for confectionery production of the XXI century]. Moscow: DeLi plyus; 2017. 332 p. (In Russ.).

4. Hartel, R. W. Confectionery science and technology / R. W. Hartel, J. H. von Elbe, R. Hofberger. – Cham : Springer, 2018. – 536 p. DOI: https://doi.org/10.1007/978-3-319-61742-8., Hartel RW, von Elbe JH, Hofberger R. Confectionery science and technology. Cham: Springer; 2018. 536 p. DOI: https://doi.org/10.1007/978-3-319-61742-8.

5. Драгилев, А. И. Основы кондитерского производства / А. И. Драгилев, Г. А. Маршалкин. – СПб. : Лань, 2017. – 532 с., Dragilev AI, Marshalkin GA. Osnovy konditerskogo proizvodstva [Confectionery basics]. St. Petersburg: Lan; 2017. 532 p. (In Russ.).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3