Neural Network Technologies in Predicting the Operating Status of Agricultural Enterprises

Author:

Grachev Aleksandr1

Affiliation:

1. Siberian State Industrial University

Abstract

All agricultural facilities in Russia are currently going through digital transformation. However, the process needs a unified approach for the entire agricultural sector. Neural network methods have already proved extremely effective in various areas of IT. The authors used neural networks to analyze statistic data and assess the performance of agricultural infrastructure. This study involved technical data from the production cycle of agro-industrial enterprises, namely packaging and greenhouses. The data obtained were analyzed using artificial neural networks. The procedure included identifying a set of factors that described an agro-industrial complex or some of its properties that corresponded to a specific task. These data were used in planning and making managerial decisions. The program identified five factors that described the state of an agricultural enterprise. These factors were used to build a model while its elements served as output data for the neural network. The model calculated the future state of the object. Trials were run on a limited data set on a multilayer perceptron. The neural network showed reliable results for a small data set. The root mean square error of was 0.1216; the mean modulus deviation was 0.0911. In this research, modern neural network technologies demonstrated good prospects for the domestic agro-industrial complex as a method of control, management, and dispatching. However, specific operational patterns require further studies.

Publisher

Kemerovo State University

Subject

Industrial and Manufacturing Engineering,Economics, Econometrics and Finance (miscellaneous),Food Science

Reference20 articles.

1. Шутьков А. А., Анищенко А. Н. Будущее искусственного интеллекта, нейросетей и цифровых технологий в АПК // Экономика и социум: современные модели развития. 2019. Т. 9.№ 4. С. 508–522. https://www.elibrary.ru/RVWTTQ, Shutkov AA, Anishchenko AN. The future of artificial intelligence, neural networks and digital technologies in agriculture. Economics and Society: Contemporary Models of Development. 2019;9(4):508–522. (In Russ.). https://www.elibrary.ru/RVWTTQ

2. Pogonyshev VA, Pogonysheva DA, Torikov VE. Neural networks in digital agriculture. Vestnik of the Bryansk State Agricultural Academy. 2021;87(5):68–71. (In Russ.). https://doi.org/10.52691/2500-2651-2021-87-5-68-71, Pogonyshev VA, Pogonysheva DA, Torikov VE. Neural networks in digital agriculture. Vestnik of the Bryansk State Agricultural Academy. 2021;87(5):68–71. (In Russ.). https://doi.org/10.52691/2500-2651-2021-87-5-68-71

3. Рогов М. А., ДубовицкийА. А. Перспектива использования нейронных сетей на рынке АПК // Наука и Образование. 2022.Т. 5. № 2. https://www.elibrary.ru/BTXLPN, Rogov MA, Dubovickiy AA. The prospect of using neural networks in the agro-indusrial complex market. Science and Education. 2022;5(2). (In Russ.). https://www.elibrary.ru/BTXLPN

4. Галанина О. В., Золотарева Ю. П. Нейронная сеть прямого распространения в исследовании экономики сельского хозяйства // Известия Международной академии аграрного образования. 2021. № 56. С. 61–64. https://www.elibrary.ru/HPXPMD, Galanina OV, Zolotaryova YuP. Feedforward neural network in the study of agricultural economics. Izvestia MAAO. 2021;(56):61–64. (In Russ.). https://www.elibrary.ru/HPXPMD

5. Yurchenko IF. Digital systems integration into agriculture within the reclaimed lands. International Technical and Economic Journal. 2020;(4):73–80. (In Russ.). https://doi.org/10.34286/1995-4646-2020-73-4-73-80, Yurchenko IF. Digital systems integration into agriculture within the reclaimed lands. International Technical and Economic Journal. 2020;(4):73–80. (In Russ.). https://doi.org/10.34286/1995-4646-2020-73-4-73-80

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Methodology and Technology of Using Neural Networks in Agriculture;2024 4th International Conference on Technology Enhanced Learning in Higher Education (TELE);2024-06-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3