Transformation of Apple Composition during Cider Production

Author:

Shirshova Anastasia1ORCID,Ageyeva Natalia1ORCID,Ulyanovskaya Elena1ORCID,Chernutskaya Evgenia1ORCID

Affiliation:

1. North-Caucasian Federal Scientific Center of Horticulture, Viticulture and Winemaking

Abstract

Cider is obtained by fermenting mashed apples of special cider varieties. The Russian State Register of Selection Achievements includes 476 varieties of apples, some of which can be used in commercial cider production. To identify potential cider cultivars, food scientists study the transformation of chemicals in apple mash during fermentation. The research involved 16 samples of apple mash and cider obtained from apples of foreign and domestic selection. Their physicochemical, biochemical, and sensory parameters were identified using standard methods, as well as the methods of high-performance capillary electrophoresis and gas chromatography. The samples revealed a wide range of concentrations of titratable acids, phenolic substances, ascorbic acids, and phenolcarboxylic acids, depending on the cultivar. After fermentation, the content of ascorbic acid decreased by an average of 76%. The content of phenolcarboxylic acids in the cider samples increased by an average of 51% compared with the apple mash samples. The ciders contained succinic, oxalic, lactic, and acetic acids, which were not registered in the apple mash, and the concentration of amino acids doubled. The cider from the Virginia variety had the best sensory profile, and it also had the highest concentration of phenolic substances (1121.6 mg/dm3). In this research, the best characteristics belonged to the ciders from apple varieties with a complex interspecific origin, obtained by a complex of polyploidy and distant hybridization methods, and with high concentrations of sugars and phenolic substances in the apple mash. Further research will test varieties of other origins and physicochemical properties for their potential use in cider, vodka, and calvados production.

Publisher

Kemerovo State University

Subject

Industrial and Manufacturing Engineering,Economics, Econometrics and Finance (miscellaneous),Food Science

Reference23 articles.

1. Oganesyants LA, Panasyuk AL, Kuz'mina EI, Sviridov DA, Ganin MYu, Shilkin AA. Traditional siders and perry identification by isotope mass spectrometry. Food Industry. 2021;(4):55–57. (In Russ.). https://doi.org/10.24412/0235-2486-2021-4-0036, Oganesyants LA, Panasyuk AL, Kuz'mina EI, Sviridov DA, Ganin MYu, Shilkin AA. Traditional siders and perry identification by isotope mass spectrometry. Food Industry. 2021;(4):55–57. (In Russ.). https://doi.org/10.24412/0235-2486-2021-4-0036

2. He W, Liu S, Heponiemi P, Heinonen M, Marsol-Vall A, Ma X, et al. Effect of Saccharomyces cerevisiae and Schizosaccharomyces pombe strains on chemical composition and sensory quality of ciders made from Finnish apple cultivars. Food Chemistry. 2021;345. https://doi.org/10.1016/j.foodchem.2020.128833, He W, Liu S, Heponiemi P, Heinonen M, Marsol-Vall A, Ma X, et al. Effect of Saccharomyces cerevisiae and Schizosaccharomyces pombe strains on chemical composition and sensory quality of ciders made from Finnish apple cultivars. Food Chemistry. 2021;345. https://doi.org/10.1016/j.foodchem.2020.128833

3. Roberts D, Reyes V, Bonilla F, Dzandu B, Liu C, Chouljenko A, et al. Viability of Lactobacillus plantarum NCIMB 8826 in fermented apple juice under simulated gastric and intestinal conditions. LWT. 2018;97:144–150. https://doi.org/10.1016/j.lwt.2018.06.036, Roberts D, Reyes V, Bonilla F, Dzandu B, Liu C, Chouljenko A, et al. Viability of Lactobacillus plantarum NCIMB 8826 in fermented apple juice under simulated gastric and intestinal conditions. LWT. 2018;97:144–150. https://doi.org/10.1016/j.lwt.2018.06.036

4. Calugar PC, Coldea TE, Salanță LC, Pop CR, Pasqualone A, Burja-Udrea C, et al. An overview of the factors influencing apple cider sensory and microbial quality from raw materials to emerging processing technologies. Processes. 2021;9(3). https://doi.org/10.3390/pr9030502, Calugar PC, Coldea TE, Salanță LC, Pop CR, Pasqualone A, Burja-Udrea C, et al. An overview of the factors influencing apple cider sensory and microbial quality from raw materials to emerging processing technologies. Processes. 2021;9(3). https://doi.org/10.3390/pr9030502

5. Wei J, Zhang Y, Wang Y, Ju H, Niu C, Song Z, et al. Assessment of chemical composition and sensorial properties of ciders fermented with different non-Saccharomyces yeasts in pure and mixed fermentations. International Journal of Food Microbiology. 2020;318. https://doi.org/10.1016/j.ijfoodmicro.2019.108471, Wei J, Zhang Y, Wang Y, Ju H, Niu C, Song Z, et al. Assessment of chemical composition and sensorial properties of ciders fermented with different non-Saccharomyces yeasts in pure and mixed fermentations. International Journal of Food Microbiology. 2020;318. https://doi.org/10.1016/j.ijfoodmicro.2019.108471

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3