Antagonistic Activity of Extremophilic Bacteria Against Phytopathogens in Agricultural Crops

Author:

Asyakina Lyudmila1ORCID,Serazetdinova Yuliya1ORCID,Frolova Anna1ORCID,Fotina Natalya1ORCID,Neverova Olga1ORCID,Petrov Andrey2ORCID

Affiliation:

1. Kemerovo State University

2. Russian Biotechnological University

Abstract

Wheat is a vital agricultural crop whose phytopathogens include fungi of the genera Fusarium and Alternaria. Synthetic pesticides, which are used to combat them, have a negative impact on the environment. Therefore, there is a need for developing safe and effective biopesticides. We aimed to create a consortium of extremophilic microorganisms isolated from natural sources to protect wheat from the diseases caused by Alternaria and Fusarium fungi. Ten isolates of extremophilic microorganisms were tested for their antimicrobial activity against Escherichia coli and their antagonistic activity against phytopathogens. Based on the results, we developed microbial consortia and evaluated their effectiveness in protecting wheat from phytopathogens. Five of the strains under study showed the highest activity, three of which were biocompatible, namely Leclercia sp., Sphingomonas paucimobilis, and Lactobacillus plantarum. Four consortia were created from these microorganisms, of which consortium B (with a 2:1:1 ratio of the strains, respectively) proved the most effective. In particular, it increased the area free from the phytopathogen by 4.2% compared to the average values of its individual microorganisms. Also, the consortium had a phytostimulating effect on wheat seedlings (germination of 73.2–99.6%) and protected the seeds infected with phytopathogens from morphometric changes. The resulting consortium can be used as a biopesticide since it is highly effective in protecting wheat from Alternaria and Fusarium pathogens.

Publisher

Kemerovo State University

Subject

Industrial and Manufacturing Engineering,Economics, Econometrics and Finance (miscellaneous),Food Science

Reference37 articles.

1. Sabouri H, Kazerani B, Fallahi HA, Dehghan MA, Alegh SM, Dadras AR, et al. Association analysis of yellow rust, fusarium head blight, tan spot, powdery mildew, and brown rust horizontal resistance genes in wheat. Physiological and Molecular Plant Pathology. 2022;118. https://doi.org/10.1016/j.pmpp.2022.101808, Sabouri H, Kazerani B, Fallahi HA, Dehghan MA, Alegh SM, Dadras AR, et al. Association analysis of yellow rust, fusarium head blight, tan spot, powdery mildew, and brown rust horizontal resistance genes in wheat. Physiological and Molecular Plant Pathology. 2022;118. https://doi.org/10.1016/j.pmpp.2022.101808

2. Drakopoulos D, Kägi A, Six J, Zorn A, Wettstein FE, Bucheli TD, et al. The agronomic and economic viability of innovative cropping systems to reduce Fusarium head blight and related mycotoxins in wheat. Agricultural Systems. 2021;192. https://doi.org/10.1016/j.agsy.2021.103198, Drakopoulos D, Kägi A, Six J, Zorn A, Wettstein FE, Bucheli TD, et al. The agronomic and economic viability of innovative cropping systems to reduce Fusarium head blight and related mycotoxins in wheat. Agricultural Systems. 2021;192. https://doi.org/10.1016/j.agsy.2021.103198

3. Shude SPN, Mbili NC, Yobo KS. Epiphytic yeasts as potential antagonists against Fusarium head blight of wheat (Triticum aestivum L.) caused by Fusarium graminearum sensu stricto. Journal of the Saudi Society of Agricultural Sciences. 2022;21(6):404–411. https://doi.org/10.1016/j.jssas.2021.11.001, Shude SPN, Mbili NC, Yobo KS. Epiphytic yeasts as potential antagonists against Fusarium head blight of wheat (Triticum aestivum L.) caused by Fusarium graminearum sensu stricto. Journal of the Saudi Society of Agricultural Sciences. 2022;21(6):404–411. https://doi.org/10.1016/j.jssas.2021.11.001

4. Zhang D, Chen G, Zhang H, Jin N, Gu C, Weng S, et al. Integration of spectroscopy and image for identifying fusarium damage in wheat kernels. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2020;236. https://doi.org/10.1016/j.saa.2020.118344, Zhang D, Chen G, Zhang H, Jin N, Gu C, Weng S, et al. Integration of spectroscopy and image for identifying fusarium damage in wheat kernels. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2020;236. https://doi.org/10.1016/j.saa.2020.118344

5. Martínez M, Biganzoli F, Arata A, Dinolfo MI, Rojas D, Cristos D, et al. Warm nights increase Fusarium Head Blight negative impact on barley and wheat grains. Agricultural and Forest Meteorology. 2022;318. https://doi.org/10.1016/j.agrformet.2022.108909, Martínez M, Biganzoli F, Arata A, Dinolfo MI, Rojas D, Cristos D, et al. Warm nights increase Fusarium Head Blight negative impact on barley and wheat grains. Agricultural and Forest Meteorology. 2022;318. https://doi.org/10.1016/j.agrformet.2022.108909

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3