Biotechnology of Lactulose Production: Progress, Challenges, and Prospects

Author:

Ryabtseva Svetlana1ORCID,Khramtsov Andrey1ORCID,Shpak Maria1,Lodygin Alexey1ORCID,Anisimov Georgy1ORCID,Sazanova Serafima1,Tabakova Yulia1

Affiliation:

1. North-Caucasus Federal University

Abstract

Lactulose is a prebiotic that has found a wide application in medicine and food industry. Commercial lactulose is usually synthesized by isomerization in alkaline media at high temperatures. Enzymatic methods offer a more sustainable alternative and require more moderate processing conditions. This review covers 44 years of scientific publications (1978–2022) on the enzymatic synthesis and purification of lactulose. The materials were retrieved from Scopus, Web of Science, PubMed, and Elibrary databases. The enzymatic approach to lactose-to-lactulose conversion has two methods: isomerization (direct) and transgalactosylation (via hydrolysis). Isomerization exploits cellulose-2-epimerases, but their safety status is still rather vague. As a result, cellulose-2-epimerases are not commercial. Epilactose is a by-product of isomerization. Transgalactosylation involves β-galactosidases with an official international safety status (GRAS). It is available on the market, and its action mechanism is well understood. This article systematizes various data on the conditions for obtaining the maximal yields of lactulose by different enzymes. The Kluyveromyces lactis yeast and the Aspergillus oryzae mold are the main sources of β-galactosidases in lactulose production. The yield can reach 30% if the processing conditions are optimal. Fructose remains the main problem in the production process. No scientific publications revealed a direct relationship between the maximal yields of lactulose and the molar fructose-tolactose ratios. Cellobiose epimerases make it possible to achieve high yields of lactulose (70–80%). However, these enzymes are associated with genetic engineering and mutagenesis, which challenges their safety status. The most promising trends in lactulose biotechnology include secondary dairy raw materials, immobilized enzymes, membrane reactors, complex production processes, lactose-to-lactulose conversion, and purification of final product.

Publisher

Kemerovo State University

Subject

Industrial and Manufacturing Engineering,Economics, Econometrics and Finance (miscellaneous),Food Science

Reference98 articles.

1. Ryabtseva SA, Khramtsov AG, Budkevich RO, Anisimov GS, Chuklo AO, Shpak MA. Physiological effects, mechanisms of action and application of lactulose. Problems of Nutrition. 2020;89(2):5–20. (In Russ.). https://doi.org/10.24411/0042-8833-2020-10012, Ryabtseva SA, Khramtsov AG, Budkevich RO, Anisimov GS, Chuklo AO, Shpak MA. Physiological effects, mechanisms of action and application of lactulose. Problems of Nutrition. 2020;89(2):5–20. (In Russ.). https://doi.org/10.24411/0042-8833-2020-10012

2. Ait-Aissa A, Aider M. Lactulose: Production and use in functional food, medical and pharmaceutical applications. Practical and critical review. International Journal of Food science and Technology. 2014;49(5):1245–1253. https://doi.org/10.1111/ijfs.12465, Ait-Aissa A, Aider M. Lactulose: Production and use in functional food, medical and pharmaceutical applications. Practical and critical review. International Journal of Food science and Technology. 2014;49(5):1245–1253. https://doi.org/10.1111/ijfs.12465

3. Hiraishi K, Zhao F, Kurahara L-H, Li X, Yamashita T, Hashimoto T, et al. Lactulose modulates the structure of gut microbiota and alleviates colitis-associated tumorigenesis. Nutrients. 2022;14(3). https://doi.org/10.3390/nu14030649, Hiraishi K, Zhao F, Kurahara L-H, Li X, Yamashita T, Hashimoto T, et al. Lactulose modulates the structure of gut microbiota and alleviates colitis-associated tumorigenesis. Nutrients. 2022;14(3). https://doi.org/10.3390/nu14030649

4. Chen H-B, Su X-Y. Efficacy and safety of lactulose for the treatment of irritable bowel syndrome. Medicine. 2019;98(39). https://doi.org/10.1097/MD.0000000000017295, Chen H-B, Su X-Y. Efficacy and safety of lactulose for the treatment of irritable bowel syndrome. Medicine. 2019;98(39). https://doi.org/10.1097/MD.0000000000017295

5. Kishor C, Ross RL, Blanchard H. Lactulose as a novel template for anticancer drug development targeting galectins. Chemical Biology and Drug Design. 2018;92(4):1801–1808. https://doi.org/10.1111/cbdd.13348, Kishor C, Ross RL, Blanchard H. Lactulose as a novel template for anticancer drug development targeting galectins. Chemical Biology and Drug Design. 2018;92(4):1801–1808. https://doi.org/10.1111/cbdd.13348

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3