Typical Properties of Beverages with Different Ethanol Content: A Comparative Analysis

Author:

Lutkov Igor1ORCID,Yermolin Dmitry2ORCID

Affiliation:

1. All-Russian National Research Institute of Viticulture and Winemaking “Magarach” RAS

2. V.I. Vernadsky Crimean Federal University

Abstract

Non-alcoholic beer and wine are in great demand. Some of them contain carbon dioxide. Dealcoholization makes it possible to obtain high-quality drinks, but changes in flavor and taste are unavoidable. This article introduces a comparative analysis of the typical properties of beer and sparkling wine with different levels of alcohol. The research featured industrial samples of beer and sparkling wine with different volume fractions of ethyl alcohol. The comparative analysis relied on standard research methods and included sensory evaluation, acidity, sparkling properties in terms of carbon dioxide desorption rate, carbon dioxide content, foamy properties, viscosity, phenolic substances, beer proteins, and optical characteristics. Alcoholic beer had a better taste and possessed a typical beer flavor. The flavor and taste profile of sparkling wines depended on the raw material. The sparkling coefficient of non-alcoholic beer was 1.2–7.5% higher than that of alcoholic beer because drinks with less ethanol have better carbon dioxide solubility. For alcoholic sparkling wine, the sparkling coefficient was higher by 19.7% than for its non-alcoholic analogue due to bound forms of carbon dioxide. The foaming properties of alcoholic drinks were better than those of the non-alcoholic samples due to the higher protein content. The yellowness and optical density of drinks at a wavelength of 350 nm depended on the amount of phenolic substances. The color index of beer depended on the content of melanoidins. The modern dealcoholization technologies make it possible to produce non-alcoholic beverages with the same sensory properties as their alcoholic prototypes. However, these technologies can be improved in terms of bound carbon dioxide, proteins, phenolic substances, and flavor.

Publisher

Kemerovo State University

Subject

Industrial and Manufacturing Engineering,Economics, Econometrics and Finance (miscellaneous),Food Science

Reference23 articles.

1. Kharlamova LN, Danilyan АV, Sinelnikova MYu, Matveeva DYu. Non-alcoholic beer: Confirmation of quality. Production Quality Control. 2021;(10):44–47. (In Russ.). https://doi.org/10.35400/2541-9900-2021-10-44-47, Kharlamova LN, Danilyan AV, Sinelnikova MYu, Matveeva DYu. Non-alcoholic beer: Confirmation of quality. Production Quality Control. 2021;(10):44–47. (In Russ.). https://doi.org/10.35400/2541-9900-2021-10-44-47

2. Trius-Soler M, Vilas-Franquesa A, Tresserra-Rimbau A, Sasot G, Storniolo CE, Estruch R, et al. Effects of the non-alcoholic fraction of beer on abdominal fat, osteoporosis, and body hydration in women. Molecules. 2020;25(17). https://doi.org/10.3390/molecules25173910, Trius-Soler M, Vilas-Franquesa A, Tresserra-Rimbau A, Sasot G, Storniolo CE, Estruch R, et al. Effects of the non-alcoholic fraction of beer on abdominal fat, osteoporosis, and body hydration in women. Molecules. 2020;25(17). https://doi.org/10.3390/molecules25173910

3. Osorio-Paz I, Brunauer R, Alavez S. Beer and its non-alcoholic compounds in health and disease. Critical Reviews in Food Science and Nutrition. 2020;60(20):3492–3505. https://doi.org/10.1080/10408398.2019.1696278, Osorio-Paz I, Brunauer R, Alavez S. Beer and its non-alcoholic compounds in health and disease. Critical Reviews in Food Science and Nutrition. 2020;60(20):3492–3505. https://doi.org/10.1080/10408398.2019.1696278

4. Nardini M, Garaguso I. Characterization of bioactive compounds and antioxidant activity of fruit beers. Food Chemistry. 2020;305. https://doi.org/10.1016/j.foodchem.2019.125437, Nardini M, Garaguso I. Characterization of bioactive compounds and antioxidant activity of fruit beers. Food Chemistry. 2020;305. https://doi.org/10.1016/j.foodchem.2019.125437

5. Boronat A, Soldevila-Domenech N, Rodríguez-Morató J, Martínez-Huélamo M, Lamuela-Raventós RM, de la Torre R. Beer phenolic composition of simple phenols, prenylated flavonoids and alkylresorcinols. Molecules. 2020;25(11). https://doi.org/10.3390/molecules25112582, Boronat A, Soldevila-Domenech N, Rodríguez-Morató J, Martínez-Huélamo M, Lamuela-Raventós RM, de la Torre R. Beer phenolic composition of simple phenols, prenylated flavonoids and alkylresorcinols. Molecules. 2020;25(11). https://doi.org/10.3390/molecules25112582

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3