Optimizing the Production of Polysaccharides from Cyanobacterium sp. IPPAS B-1200

Author:

Sukhikh Stanislav1ORCID,Budenkova Ekaterina1ORCID,Boychenko Yulia-Danae1ORCID,Anokhova Veronika1,Dolganyuk Vyacheslav1ORCID,Kashirskich Egor1ORCID

Affiliation:

1. Immanuel Kant Baltic Federal University

Abstract

Cyanobacterium sp. IPPAS B-1200 is a cyanobacteria strain that belongs to the rare genus Cyanobacterium, family Cyanobacteriaceae fam. nov. Studies devoted to the isolation of secondary metabolites from this strain concentrate mostly on the fatty acid composition while the issue of isolating and identifying exopolysaccharides remains understudied. However, polysaccharides from cyanobacteria are of scientific and economic interest in the framework of biotechnology, medicine, pharmacology, etc. The research objective was to study the effect of the physicochemical conditions of cultivation and the composition of the cultural medium on exopolysaccharide production. Cyanobacterium sp. B-1200 were grown under 7500 ± 50 lux (12 h light/12 h dark). The dry cell weight was determined by gravimetry and a calibration plot that illustrated the dependence of the biomass amount on the degree of absorption at a wavelength of 750 nm. The amount of polysaccharides in the culture liquid was assessed by the Anthrone-sulphate method. The extraction was carried out by alcohol precipitation. The method of ultrasonic dispersion was used to destroy the cell walls of cyanobacteria. The experimental study revealed the optimal parameters for the extraction and purification of exopolysaccharides from the culture medium. Removal of sodium bicarbonate from the medium and a 300%-increase in its concentration raised the yield of polysaccharides. The optimal value of active acidity for the synthesis of polysaccharides was pH = 6 while the optimal temperature for their accumulation was 35°C. The largest amount of biomass was obtained at 25°C. Intense white illumination contributed to the greatest release of exopolysaccharides into the culture medium; red-white illumination affected the morphology of cyanobacteria cells. During the extraction, the concentration, temperature, and nature of the extractant proved to be the most important factors. For example, isopropanol produced the highest yield while butanol triggered the least effective response. The optimal extraction and purification modes for polysaccharides were as follows. For ultrasonic processing, the best results were obtained at a power of 20 W after 5 min. For freeze drying, the rational parameters were 8 h at –15°C.

Publisher

Kemerovo State University

Subject

Industrial and Manufacturing Engineering,Economics, Econometrics and Finance (miscellaneous),Food Science

Reference37 articles.

1. El-Ghonemy DH. Antioxidant and antimicrobial activities of exopolysaccharides produced by a novel Aspergillus sp. DHE6 under optimized submerged fermentation conditions. Biocatalysis and Agricultural Biotechnology. 2021;36. https://doi.org/10.1016/j.bcab.2021.102150, El-Ghonemy DH. Antioxidant and antimicrobial activities of exopolysaccharides produced by a novel Aspergillus sp. DHE6 under optimized submerged fermentation conditions. Biocatalysis and Agricultural Biotechnology. 2021;36. https://doi.org/10.1016/j.bcab.2021.102150

2. Ramos J, Villacrés NA, Cavalheiro ÉTG, Alarcón HA, Valderrama AC. Preparation of sodium alginate films incorporated with hydroalcoholic extract of Macrocystis pyrifera L. Foods and Raw Materials. 2023;11(1):64–71. https://doi.org/10.21603/2308-4057-2023-1-553, Ramos J, Villacrés NA, Cavalheiro ÉTG, Alarcón HA, Valderrama AC. Preparation of sodium alginate films incorporated with hydroalcoholic extract of Macrocystis pyrifera L. Foods and Raw Materials. 2023;11(1):64–71. https://doi.org/10.21603/2308-4057-2023-1-553

3. Moreira JB, Kuntzler SG, Bezerra PQM, Aguiar Cassuriaga AP, Zaparoli M, da Silva JLV, et al. Recent advances of microalgae exopolysaccharides for application as bioflocculants. Polysaccharides. 2022;3(1):264–276. https://doi.org/10.3390/polysaccharides3010015, Moreira JB, Kuntzler SG, Bezerra PQM, Aguiar Cassuriaga AP, Zaparoli M, da Silva JLV, et al. Recent advances of microalgae exopolysaccharides for application as bioflocculants. Polysaccharides. 2022;3(1):264–276. https://doi.org/10.3390/polysaccharides3010015

4. Potnis AA, Raghavan PS, Rajaram H. Overview on cyanobacterial exopolysaccharides and biofilms: Role in bioremediation. Reviews in Environmental Science and Bio/Technology. 2021;20:781–794. https://doi.org/10.1007/s11157-021-09586-w, Potnis AA, Raghavan PS, Rajaram H. Overview on cyanobacterial exopolysaccharides and biofilms: Role in bioremediation. Reviews in Environmental Science and Bio/Technology. 2021;20:781–794. https://doi.org/10.1007/s11157-021-09586-w

5. Zuniga EG, Boateng KKA, Bui NU, Kurnfuli S, Muthana SM, Risser DD. Identification of a hormogonium polysaccharide‐specific gene set conserved in filamentous cyanobacteria. Molecular Microbiology. 2020;114(4):597–608. https://doi.org/10.1111/mmi.14566, Zuniga EG, Boateng KKA, Bui NU, Kurnfuli S, Muthana SM, Risser DD. Identification of a hormogonium polysaccharide‐specific gene set conserved in filamentous cyanobacteria. Molecular Microbiology. 2020;114(4):597–608. https://doi.org/10.1111/mmi.14566

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3