Biological Safety Assessment of Antarctic Krill Euphausia superba (Dana, 1852) from the Atlantic Ocean

Author:

Lazareva Olga1,Sytov Aleksandr2

Affiliation:

1. Perm State Agro-Technological University named after academician D.N. Pryanishnikov

2. Russian Federal Research Institute of Fisheries and Oceanography

Abstract

The development of the Antarctic krill fishery is a promising direction of Russian food industry. Euphausia superba is the largest source of animal protein in the global oceans. According to the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR), the year of 2021 saw a steady increase in the global catch of krill. The Government of the Russian Federation approved a program for the development of the oceanic fishery for crustaceans. The assessment of its biological safety is of particular interest because the extraction of this raw material in Russia is currently undergoing a restoration process. The purpose of the study was to analyze samples of Antarctic krill E. superba for parasites and microorganisms that could affect its sanitary condition. The study featured the microplankton of E. superba crustaceans (n = 130) caught in 2019–2020 by the Federal Agency for Fishery. The methods included an incomplete helminthological analysis, as well as compressor, microbiological, and histological studies. The visual inspection, helminthological dissection, and compressor microscopy revealed no helminth larvae or protozoa. In a microbiological study for safety indicators according to CU TR 021/2011, EAEU TR 040/2016 and Sanitary Rules and Norms SanPiN 2.3.2.1078-01, the quantity of mesophilic aerobic and facultative anaerobic microorganisms (QMAFAnM) were did not exceed 1.0×103 at 37 and 25°C. Opportunistic and pathogenic microorganisms were not detected. When examining cultivate for the isolation of Staphylococci, were found Cocci, but we did not identify them. When the material was sown on the Sabouraud nutrient medium at 24°C, Penicillium microscopic fungi grew on the plates in the amount of 3.0×102. Histological examination of carapace, gills, and internal organs detected no parasitological organisms, pathological inclusions, or any tissue changes. The Antarctic krill contained no parasites and was microbiologically safe. After tests on Vibrio parahemolyticus and Listeria monocytogenes, it can be used in the food industry.

Publisher

Kemerovo State University

Subject

Industrial and Manufacturing Engineering,Economics, Econometrics and Finance (miscellaneous),Food Science

Reference30 articles.

1. Andreev MP. Antarctic krill (Euphausia superba) – the past, present and the future development of technology processing. Problems of Fisheries. 2021;22(1):5–15. (In Russ.). https://doi.org/10.36038/0234-2774-2021-22-1-5-15, Andreev MP. Antarctic krill (Euphausia superba) – the past, present and the future development of technology processing. Problems of Fisheries. 2021;22(1):5–15. (In Russ.). https://doi.org/10.36038/0234-2774-2021-22-1-5-15

2. Wang R, Song P, Li Y, Lin L. An integrated, size-structured stock assessment of Antarctic krill, Euphausia superba. Frontiers in Marine Science. 2021;8. https://doi.org/10.3389/fmars.2021.710544, Wang R, Song P, Li Y, Lin L. An integrated, size-structured stock assessment of Antarctic krill, Euphausia superba. Frontiers in Marine Science. 2021;8. https://doi.org/10.3389/fmars.2021.710544

3. Siegel V. Biology and ecology of Antarctic krill. Cham: Springer; 2016. 441 p. https://doi.org/10.1007/978-3-319-29279-3, Siegel V. Biology and ecology of Antarctic krill. Cham: Springer; 2016. 441 p. https://doi.org/10.1007/978-3-319-29279-3

4. Bandurin KV, Kasatkina SM. Development of Russian resource reserch and fishery for krill Euphausia superba: problems and prospects. Problems of Fisheries. 2021;22(2):20–26. (In Russ.). https://doi.org/10.36038/0234-2774-2021-22-2-20-26, Bandurin KV, Kasatkina SM. Development of Russian resource reserch and fishery for krill Euphausia superba: problems and prospects. Problems of Fisheries. 2021;22(2):20–26. (In Russ.). https://doi.org/10.36038/0234-2774-2021-22-2-20-26

5. Kaur K, Kortner TM, Benitez-Santana T, Burri L. Effects of Antarctic krill products on feed intake, growth performance, fillet quality, and health in salmonids. Aquaculture Nutrition. 2022;2022. https://doi.org/10.1155/2022/3170854, Kaur K, Kortner TM, Benitez-Santana T, Burri L. Effects of Antarctic krill products on feed intake, growth performance, fillet quality, and health in salmonids. Aquaculture Nutrition. 2022;2022. https://doi.org/10.1155/2022/3170854

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3