Sentiment Analysis: Linguistic Potential of Preprocessing Regimentation

Author:

Barkovich Aleksandr1ORCID

Affiliation:

1. Minsk State Linguistic University

Abstract

The article deals with the sentiment analysis regimentation as a relevant direction in automated natural language processing and its linguistic potential. Despite its impressive practical significance, the sentiment analysis still lacks reliable theoretical foundation. Although information technologies develop very fast, their fundamental foundations correlate with the linguistic system of knowledge. In fact, the methodological priority of the applied linguistics has no alternative with regard to the interdisciplinary specificity of the modern communication. The complex nature of this research made the authors appeal to the computer linguistics in order to provide a meta-description on the algorithmization and modeling of sentiment evaluation. The effectiveness of the relevant practice was conditioned by the optimal configuration of the procedure and an appropriate material evaluation. The preprocessing included identifying the meta-structure, defining its referentiality and level orientation, and choosing the analysis model. The authors described these main steps of the preprocessing algorithm, as well as the relevant practice. The study contributes to productive theoretical optimization of text sentiment analysis. In a broad context, the expedient disclosure of linguistic potential is relevant to the whole sphere of automated natural language processing.

Publisher

Kemerovo State University

Reference27 articles.

1. Баркович А. А. Интернет-дискурс: метаязыковые модели практики. Вестник Волгоградского государственного университета. Серия 2, Языкознание. 2015. № 5. С. 171–183. https://doi.org/10.15688/jvolsu2.2015.5.21, Barkovich A. A. Internet discourse: metalanguage models of practice. Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 2. Yazykoznanie, 2015, (5): 171–183. (In Russ.)] https://doi.org/10.15688/jvolsu2.2015.5.21

2. Большакова Е. И., Клышинский Э. С., Ландэ Д. В., Носков А. А., Пескова О. В., Ягунова Е. В. Автоматическая обработка текстов на естественном языке и компьютерная лингвистика. М.: МИЭМ, 2011. 272 с. https://elibrary.ru/tdhfwd, Bolshakova E. I., Klyshinsky E. S., Lande D. V., Noskov A. A., Peskova O. V., Yagunova E. V. Automatic processing of natural language texts and computational linguistics. Moscow: MIEM, 2011. 272. (In Russ.)] https://elibrary.ru/tdhfwd

3. Котельников Е. В., Разова Е. В., Котельникова А. В., Вычегжанин С. В. Современные словари оценочной лексики для анализа мнений на русском и английском языках (аналитический обзор). Научно-техническая информация. Сер. 2. Информационные процессы и системы. 2020. № 12. С. 16–33. https://doi.org/10.36535/0548-0027-2020-12-3, Kotelnikov E. V., Razova E. V., Kotelnikova A. V., Vychegzhanin S. V. Modern sentiment lexicons for opinion mining in English and Russian (analytical survey). Nauchno-tekhnicheskaya informatsiya. Ser. 2. Informatsionnye protsessy i sistemy, 2020, (12): 16–33. (In Russ.)] https://doi.org/10.36535/0548-0027-2020-12-3

4. Кулагин Д. И. Открытый тональный словарь русского языка КартаСловСент. Компьютерная лингвистика и интеллектуальные технологии: ежегодная Междунар. конф. «Диалог». (Москва, 16–19 июня 2021 г.) М.: РГГУ, 2021. Вып. 20. С. 1106–1119. https://doi.org/10.28995/2075-7182-2021-20-1106-1119, Kulagin D. I. Publicly available sentiment dictionary for the Russian language KartaSlovSent. Computational linguistics and intellectual technologies: Annual Intern. Conf. "Dialogue", Moscow, 16–19 Jun 2021. Moscow: RSUH, 2021, iss. 20, 1106–1119. (In Russ.)] https://doi.org/10.28995/2075-7182-2021-20-1106-1119

5. Майорова Е. В. О сентимент-анализе и перспективах его применения. Социальные и гуманитарные науки. Отечественная и зарубежная литература. Серия 6: Языкознание. Реферативный журнал. 2020. № 4. С. 78–87. https://www.elibrary.ru/tagobd, Mayorova E. V. On sentiment analysis and prospects for its application. Sotsialnye i gumanitarnye nauki. Otechestvennaya i zarubezhnaya literatura. Seriya 6: Yazykoznanie. Referativnyy zhurnal, 2020, (4): 78–87. (In Russ.)] https://www.elibrary.ru/tagobd

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3