PROBABILISTIC SPACE FOR CALCULATION OF PROBABILISTIC CHARACTERISTICS OF A THREE-PARAMETER QUEUEING SYSTEM MODEL

Author:

Pavsky Valery,Pavsky Valery1,Pavsky Kirill,Pavsky Kirill2,Ivanova Svetlana,Ivanova Svetlana1,Sedukhin Stanislav,Sedukhin Stanislav3

Affiliation:

1. Kemerovo Institute of Technology of the Food Industry (University)

2. Rzhanov Institute of Semiconductor Physics Siberian Branch of Russian Academy of Sciences

3. The University of Aizu

Abstract

A model of queueing theory is proposed that describes a queueing system with three parameters, which has important practical applications. The model is based on the continuous time Markov process with a discrete number of states. The model is formalized by a probabilistic space in which the space of elementary events is a set of inconsistent states of the queueing system; and the probabilistic measure is a probability distribution corresponding to a set of elementary events, that is, each elementary event is associated with the probability of the system staying in this state, for each fixed time moment. The model is represented by a system of ordinary differential equations, compiled by methods of queueing theory (Kolmogorov equations). To find the solution of the system of equations, the method of generating functions is used. For the generating function, a partial differential equation is obtained. Finding the generating function completes the construction of a probability space. The latter means that for any random variables and functions defined on the resulting probability space, one can find their probabilistic characteristics. In particular, analytical expressions of the moments (mathematical expectations and variances) of random functions that depend on time are obtained. The peculiarity of finding a solution is that it is obtained not from the probability distribution, but directly from the partial differential equation, which represents a system of ordinary differential equations. For the probability distribution, the solution was found by a combinatorial method, which made it possible to significantly reduce the computations. To apply the formulas in engineering calculations, we consider the stationary case, to which a considerable simplification of the calculations corresponds. A relationship between a system of differential equations and a polynomial distribution known in probability theory is shown. The results are used in the analysis of the reliability of the operation of scalable computing systems; graphical implementation is shown

Publisher

Kemerovo State University

Reference20 articles.

1. 1. Vishnevskiy V.M. and Semenova O.V. Sistemy pollinga: teoriya i primenenie v shirokopolosnykh besprovodnykh setyakh [Polling systems: theory and application in broadband wireless networks]. Moscow: Technosphere Publ., 2007. 309 p., 1. Vishnevskiy V.M. and Semenova O.V. Sistemy pollinga: teoriya i primenenie v shirokopolosnykh besprovodnykh setyakh [Polling systems: theory and application in broadband wireless networks]. Moscow: Technosphere Publ., 2007. 309 p.

2. 2. Ivanova S.A. and Pavsky V.A. Solution of stochastic differential equations of the models of queueing theory by the method of generating function. Science Evolution, 2016, vol. 1, no. 1, pp. 53-62., 2. Ivanova S.A. and Pavsky V.A. Solution of stochastic differential equations of the models of queueing theory by the method of generating function. Science Evolution, 2016, vol. 1, no. 1, pp. 53-62.

3. 3. Pavsky V.A. and Pavsky K.V. Stochastic simulation and analysis of the operation of computing systems with structural redundancy. Optoelectronics, instrumentation and data processing, 2014, vol. 50, no. 4, pp. 363-369., 3. Pavsky V.A. and Pavsky K.V. Stochastic simulation and analysis of the operation of computing systems with structural redundancy. Optoelectronics, instrumentation and data processing, 2014, vol. 50, no. 4, pp. 363-369.

4. 4. Pavsky V.A. Teoriya veroyatnostey i matematicheskaya statistika [Theory of Probability and Mathematical Statistics]. Kemerovo: KemTIPP Publ., 2014. 238 p., 4. Pavsky V.A. Teoriya veroyatnostey i matematicheskaya statistika [Theory of Probability and Mathematical Statistics]. Kemerovo: KemTIPP Publ., 2014. 238 p.

5. 5. Saaty T. Elements of queueing theory with application. New York: Dover publications, 1961. 436 p., 5. Saaty T. Elements of queueing theory with application. New York: Dover publications, 1961. 436 p.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3