ON EPSTEIN-BARR VIRUS ACTIVATION IN LYMPHOID AND EPITHELIAL CANCER CELLS

Author:

Astakhova Lidiya,Astakhova Lidiya1,Matskova Lyudmila,Matskova Lyudmila1,Ernberg Ingemar,Ernberg Ingemar1

Affiliation:

1. Karolinska Institute

Abstract

Symbiotic microbiota system functions in homeostasis maintenance of organism are performed through production of multiple microbial low-molecular-weight compounds. Short-chain fatty acids (SCFAs) have a special and multifunctional role among similar compounds. The most important SCFA is a butyric acid which provides barrier and metabolic functions mainly in large intestine. Hyperacetylasion of histones due to histone deacetylase (HDAC) inhibition is one of the key mechanisms, by dint of which the butyric acid influences biologically the large intestine atypical cells. Butyric acid influence at the molecular level is studied insufficiently, in particular, even taking into account all positive effects, there is a danger of reactivation of latent infections which are in cells in their latent form and which may enter acute lytic phase when the transcriptional apparatus is activated. This article presents the study results of butyric acid mechanisms of influence on replication process of Epstein-Barr virus in cancer cells of different origin. It is demonstrated that under the butyric acid influence in epithelial and lymphoid cells transition from latent virus phase to lytic one takes place by means of BZLF-1 and BRLF-1 genes activation. Besides, the butyric acid inhibiting effect on epithelial nasopharynx cancer cells migration in vitro is demonstrated. Based on the obtained data, conclusions were made concerning practicability of butyric acid studying for further use as a functional product in the fight against cancer.

Publisher

Kemerovo State University

Reference39 articles.

1. Ianiro G., Bibbo S., Gasbarrini A., Cammarota G. Therapeutic Modulation of Gut Microbiota: Current Clinical Applications and Future Perspectives. Current Drug Targets, 2014, vol. 15, no. 8, pp. 762-770., Ianiro G., Bibbo S., Gasbarrini A., Cammarota G. Therapeutic Modulation of Gut Microbiota: Current Clinical Applications and Future Perspectives. Current Drug Targets, 2014, vol. 15, no. 8, pp. 762-770.

2. Tlaskalová-Hogenová H., Štěpánková R., Kozáková H., Hudcovic T., Luca V., Tučková L., et al. The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cellular & Molecular Immunology, 2011, no. 8, pp. 110-120. doi:10.1038/cmi.2010.67., Tlaskalová-Hogenová H., Štěpánková R., Kozáková H., Hudcovic T., Luca V., Tučková L., et al. The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cellular & Molecular Immunology, 2011, no. 8, pp. 110-120. doi:10.1038/cmi.2010.67.

3. Topping D.L., Clifton P.M. Short-Chain Fatty Acids and Human Colonic Function: Roles of Resistant Starch and Nonstarch Polysaccharides. Physiological Reviews, 2001, vol. 81, no.3, pp. 1031-1064., Topping D.L., Clifton P.M. Short-Chain Fatty Acids and Human Colonic Function: Roles of Resistant Starch and Nonstarch Polysaccharides. Physiological Reviews, 2001, vol. 81, no.3, pp. 1031-1064.

4. Hill M.J. Bacterial fermentation of complex carbohydrate in the human colon. Eur J Cancer Prev, 1995, vol. 4, no. 5, pp. 353-358., Hill M.J. Bacterial fermentation of complex carbohydrate in the human colon. Eur J Cancer Prev, 1995, vol. 4, no. 5, pp. 353-358.

5. Cummings J.H. Microbial Digestion of Complex Carbohydrates in Man. Proceedings of the Nutrition Society, 1984, vol. 4, no. 1, pp. 35-44., Cummings J.H. Microbial Digestion of Complex Carbohydrates in Man. Proceedings of the Nutrition Society, 1984, vol. 4, no. 1, pp. 35-44.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3