AFFINOR METRIC STRUCTURES AND THEIR PHYSICAL APPLICATIONS

Author:

Kornev Evgeniy,Kornev Evgeniy1

Affiliation:

1. Kemerovo State University

Abstract

This work describes the fundamentals of the mathematical theory of affinor metric structures and physical problems where these structures are used. Affinor metric structure is defined as an arbitrary 1-form having a radical of arbitrary rank, a certain Riemannian metric and a special field of automorphisms of tangent spaces connecting the exterior differential of this 1-form and a metric. Affinor metric structures are a generalization of almost contact metric structures and Kahlerian structures with a precise fundamental 2-form. At the end of the work, applications of affinor metric structures in physics are described. The purpose of this article is to demonstrate possibilities of application of the theory of affinor metric structures when solving various mathematical and physical problems. In particular, the use of such structures to search for closed curves with a nonzero circulation of a vector field and construction of submanifolds on which the exterior differential of some 1-form induced by a vector field is non-degenerated. Methods of Riemann geometry and theories of differential forms and mathematical analysis on manifolds were used. The relevance of the subject matter is due to the most common case of statement of the problem for some 1-form with radical of arbitrary dimension. While in classic case, physics and geometry consider only 1-forms with a zero radical.

Publisher

Kemerovo State University

Reference6 articles.

1. Calvaruso G. Three-dimensional homogeneous almost contact metric structures. Journal of Geometry and Physics, 2013, vol. 69, pp. 60-73., Calvaruso G. Three-dimensional homogeneous almost contact metric structures. Journal of Geometry and Physics, 2013, vol. 69, pp. 60-73.

2. Kornev E.S. Invariantnye affinornye metricheskie struktury na gruppakh Li [Invariant affinor metric structures on Lie groups]., Kornev E.S. Invariantnye affinornye metricheskie struktury na gruppakh Li [Invariant affinor metric structures on Lie groups].

3. Sibirskiy matematicheskiy zhurnal [Siberian Mathematical Journal], 2012, vol. 53, no. 1, pp. 107-123., Sibirskiy matematicheskiy zhurnal [Siberian Mathematical Journal], 2012, vol. 53, no. 1, pp. 107-123.

4. Kornev E.S. Affinornye struktury na vektornykh rassloeniyakh [Affinor structures on vector bundles]. Sibirskiy matematicheskiy zhurnal [Siberian Mathematical Journal], 2014, vol. 55, no. 6, pp. 1283-1296., Kornev E.S. Affinornye struktury na vektornykh rassloeniyakh [Affinor structures on vector bundles]. Sibirskiy matematicheskiy zhurnal [Siberian Mathematical Journal], 2014, vol. 55, no. 6, pp. 1283-1296.

5. Kornev E.S., Slavolyubova Ya.V. Invariantnye affinornye i subkelerovy struktury na odnorodnykh prostranstvakh [Invariant affinor and sub-Kahlerian structures on homogeneous spaces]. Sibirskiy matematicheskiy zhurnal [Siberian Mathematical Journal], 2016, vol. 57, no. 1, pp. 51-63., Kornev E.S., Slavolyubova Ya.V. Invariantnye affinornye i subkelerovy struktury na odnorodnykh prostranstvakh [Invariant affinor and sub-Kahlerian structures on homogeneous spaces]. Sibirskiy matematicheskiy zhurnal [Siberian Mathematical Journal], 2016, vol. 57, no. 1, pp. 51-63.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3