THE RESIDUE THEOREM AND AN ANALOG OF P. APPELL’S FORMULA FOR FINITE RIEMANN SURFACES

Author:

Chueshev Viktor,Chueshev Viktor1,Chueshev Aleksandr,Chueshev Aleksandr1

Affiliation:

1. Kemerovo State University

Abstract

A theory of multiplicative functions and Prym differentials for the case of special characters on compact Riemann surfaces has found applications in geometrical function theory of complex variable, analytical number theory and in equations of mathematical physics. Theory of functions on compact Riemann surfaces differs from the theory of functions on finite Riemann surfaces even for the class of single meromorphic functions and Abelian differentials. In this article we continue the construction of the general function theory on finite Riemann surfaces for multiplicative meromorphic functions and differentials. We have proved analogues of the theorem on the full sum of residues for Prym differentials of every integral order and P. Appell's formula on expansion of the multiplicative function with poles of arbitrary multiplicity in the sum of elementary Prym integrals.

Publisher

Kemerovo State University

Reference7 articles.

1. Dick R. Krichever - Novikov - like bases on punctured Riemann surfaces. Lett. Math. Phys, 1989, vol. 18, pp. 255-265,, Dick R. Krichever - Novikov - like bases on punctured Riemann surfaces. Lett. Math. Phys, 1989, vol. 18, pp. 255-265,

2. Chueshev V.V. Mul'tiplikativnye funktsii i differentsialy Prima na peremennoy kompaktnoy rimanovoy poverkhnosti. Chast' 2 [Multiplicative functions and Prym differentials on a variable compact Riemann surface. Part 2]. Kemerovo: KemSU Publ., 2003. 248 p., Chueshev V.V. Mul'tiplikativnye funktsii i differentsialy Prima na peremennoy kompaktnoy rimanovoy poverkhnosti. Chast' 2 [Multiplicative functions and Prym differentials on a variable compact Riemann surface. Part 2]. Kemerovo: KemSU Publ., 2003. 248 p.

3. Al'fors L.V., Bers L. Prostranstva rimanovykh poverkhnostey i kvazikonformnye otobrazheniya [Spaces of Riemann surfaces and quasiconformal mappings]. Moscow: IL Publ., 1961. 177 p., Al'fors L.V., Bers L. Prostranstva rimanovykh poverkhnostey i kvazikonformnye otobrazheniya [Spaces of Riemann surfaces and quasiconformal mappings]. Moscow: IL Publ., 1961. 177 p.

4. Farkas H.M., Kra I. Riemann surfaces. New-York: Springer-Verl., 1992. 363 p., Farkas H.M., Kra I. Riemann surfaces. New-York: Springer-Verl., 1992. 363 p.

5. Earle C.J. Families of Riemann surfaces and Jacobi varieties. Annals of Mathematics, 1978, vol. 107, pp. 255-286., Earle C.J. Families of Riemann surfaces and Jacobi varieties. Annals of Mathematics, 1978, vol. 107, pp. 255-286.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3