Chitosan complexes with amino acids and whey peptides: Sensory and antioxidant properties

Author:

Halavach Tatsiana1ORCID,Kurchenko Vladimir1ORCID,Tarun Ekaterina2ORCID,Romanovich Roman3ORCID,Mushkevich Natalia1ORCID,Kazimirov Alexander3ORCID,Lodygin Aleksei4ORCID,Evdokimov Ivan4ORCID

Affiliation:

1. Belarusian State University

2. Sakharov International Environmental Institute of Belarusian State University

3. Center for Hygiene and Epidemiology of the Moskovsky District of Minsk

4. North-Caucasus Federal University

Abstract

Chitosan reacts with amino acids and hydrolyzed whey proteins to produce biologically active complexes that can be used in functional foods. The research objective was to obtain chitosan biocomposites with peptides and amino acids with improved antioxidant and sensory properties. The research featured biocomposites of chitosan and succinylated chitosan with whey peptides and amino acids. The methods of pH metry and spectrophotometry were employed to study the interaction parameters between polysaccharides and peptides, while colorimetry and spectrophotometry served to describe the amino acids content. The antiradical effect was determined by the method of fluorescence recovery. Pure compounds and their complexes underwent a sensory evaluation for bitterness. Chitosan and succinylated chitosan formed complexes with whey peptides and such proteinogenic amino acids as arginine, valine, leucine, methionine, and tryptophan. The equimolar binding of tryptophan, leucine, and valine occurred in an aqueous chitosan solution (in terms of glucosamine). Methionine appeared to be the least effective in chitosan interaction, while arginine failed to complex both with chitosan and succinylated chitosan. Chitosan and succinylated chitosan biocomposites with peptides and leucine, methionine, and valine proved to be less bitter that the original substances. The samples with arginine maintained the same sensory properties. Chitosan complexes with tryptophan and peptides increased their antioxidant activity by 1.7 and 2.0 times, respectively, while their succinylated chitosan complexes demonstrated a 1.5 fold increase. Chitosan and succinylated chitosan biocomplexes with tryptophan and whey protein peptides had excellent antioxidant and sensory properties. However, chitosan proved more effective than succinylated chitosan, probably, because it was richer in protonated amino groups, which interacted with negatively charged amino acids groups.

Publisher

Kemerovo State University

Subject

Food Science,Agricultural and Biological Sciences (miscellaneous),General Veterinary

Reference36 articles.

1. Shivanna SK, Nataraj BH. Revisiting therapeutic and toxicological fingerprints of milk-derived bioactive peptides: An overview. Food Bioscience. 2020;38. https://doi.org/10.1016/j.fbio.2020.100771, Shivanna SK, Nataraj BH. Revisiting therapeutic and toxicological fingerprints of milk-derived bioactive peptides: An overview. Food Bioscience. 2020;38. https://doi.org/10.1016/j.fbio.2020.100771

2. Zhao C, Ashaolu TJ. Bioactivity and safety of whey peptides. LWT. 2020;134. https://doi.org/10.1016/j.lwt.2020.109935, Zhao C, Ashaolu TJ. Bioactivity and safety of whey peptides. LWT. 2020;134. https://doi.org/10.1016/j.lwt.2020.109935

3. Ye H, Tao X, Zhang W, Chen Y, Yu Q, Xie J. Food-derived bioactive peptides: production, biological activities, opportunities and challenges. Journal of Future Foods. 2022;2(4):294–306. https://doi.org/10.1016/j.jfutfo.2022.08.002, Ye H, Tao X, Zhang W, Chen Y, Yu Q, Xie J. Food-derived bioactive peptides: production, biological activities, opportunities and challenges. Journal of Future Foods. 2022;2(4):294–306. https://doi.org/10.1016/j.jfutfo.2022.08.002

4. Nutten S, Schuh S, Dutter T, Heine RG, Kuslys M. Design, quality, safety and efficacy of extensively hydrolyzed formula for management of cow’s milk protein allergy: What are the challenges? Advances in Food and Nutrition Research. 2020;93:147–204. https://doi.org/10.1016/bs.afnr.2020.04.004, Nutten S, Schuh S, Dutter T, Heine RG, Kuslys M. Design, quality, safety and efficacy of extensively hydrolyzed formula for management of cow’s milk protein allergy: What are the challenges? Advances in Food and Nutrition Research. 2020;93:147–204. https://doi.org/10.1016/bs.afnr.2020.04.004

5. Liceaga AM, Hall F. Nutritional, functional and bioactive protein hydrolysates. In: Melton L, Shahidi F, Varelis P, editors. Encyclopedia of food chemistry. Reference work. Vol. 3. Elsevier; 2019. pp. 456–464. https://doi.org/10.1016/B978-0-08-100596-5.21776-9, Liceaga AM, Hall F. Nutritional, functional and bioactive protein hydrolysates. In: Melton L, Shahidi F, Varelis P, editors. Encyclopedia of food chemistry. Reference work. Vol. 3. Elsevier; 2019. pp. 456–464. https://doi.org/10.1016/B978-0-08-100596-5.21776-9

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3