Nanoemulsion-based active packaging for food products

Author:

Prasad Jaishankar1,Dixit Aishwarya2ORCID,Sharma Sujata P.1ORCID,Mwakosya Anjelina W.3ORCID,Petkoska Anka T.4ORCID,Upadhyay Ashutosh2ORCID,Kumar Nishant2ORCID

Affiliation:

1. Sharda University

2. National Institute of Food Technology Entrepreneurship and Management

3. University of Dar es Salaam

4. St. Clement of Ohrid University of Bitola

Abstract

Recently, there has been an increasing trend in the food and pharmaceutical industries towards using nanotechnological approaches to drug delivery and active packaging (edible coatings and films). In the food sector, nanoemulsions are the most promising technology for delivering active components and improving the barrier, mechanical, and biological properties of packaging to ensure the safety and quality of food products, as well as extend their shelf life. For this review, we used several databases (Google Scholar, Science Direct, PubMed, Web of Science, Scopus, Research Gate, etc.) to collect information about nanoemulsions and their role in edible packaging. We searched for articles published between 2015 and 2022 and described different scientific approaches to developing active packaging systems based on nanoemulsions, as well as their high-energy and low-energy synthesis methods. We also reviewed the uses of different types of essential oil-based nanoemulsions in the packaging of food products to prolong their shelf life and ensure safety. Non-migratory active packaging and active-release packaging systems were also discussed, as well as their advantages and disadvantages.

Publisher

Kemerovo State University

Subject

Food Science,Agricultural and Biological Sciences (miscellaneous),General Veterinary

Reference116 articles.

1. Wang L, Dong J, Chen J, Eastoe J, Li X. Design and optimization of a new self-nanoemulsifying drug delivery system. Journal of Colloid and Interface Science. 2009;330(2):443–448. https://doi.org/10.1016/j.jcis.2008.10.077, Wang L, Dong J, Chen J, Eastoe J, Li X. Design and optimization of a new self-nanoemulsifying drug delivery system. Journal of Colloid and Interface Science. 2009;330(2):443–448. https://doi.org/10.1016/j.jcis.2008.10.077

2. Wu X, Guy RH. Applications of nanoparticles in topical drug delivery and in cosmetics. Journal of Drug Delivery Science and Technology. 2009;19(6):371–384. https://doi.org/10.1016/s1773-2247(09)50080-9, Wu X, Guy RH. Applications of nanoparticles in topical drug delivery and in cosmetics. Journal of Drug Delivery Science and Technology. 2009;19(6):371–384. https://doi.org/10.1016/s1773-2247(09)50080-9

3. Shah P, Bhalodia D, Shelat P. Nanoemulsion: A pharmaceutical review. Systematic Reviews in Pharmacy. 2010;1(1):24–32. https://doi.org/10.4103/0975-8453.59509, Shah P, Bhalodia D, Shelat P. Nanoemulsion: A pharmaceutical review. Systematic Reviews in Pharmacy. 2010;1(1):24–32. https://doi.org/10.4103/0975-8453.59509

4. Cheng CJ, Tietjen GT, Saucier-Sawyer JK, Saltzman WM. A holistic approach to targeting disease with polymeric nanoparticles. Nature Reviews Drug Discovery. 2015;14(4):239–247. https://doi.org/10.1038/nrd4503, Cheng CJ, Tietjen GT, Saucier-Sawyer JK, Saltzman WM. A holistic approach to targeting disease with polymeric nanoparticles. Nature Reviews Drug Discovery. 2015;14(4):239–247. https://doi.org/10.1038/nrd4503

5. Singh Y, Meher JG, Raval K, Khan FA, Chaurasia M, Jain NK, et al. Nanoemulsion: Concepts, development and applications in drug delivery. Journal of Controlled Release. 2017;252:28–49. https://doi.org/10.1016/j.jconrel.2017.03.008, Singh Y, Meher JG, Raval K, Khan FA, Chaurasia M, Jain NK, et al. Nanoemulsion: Concepts, development and applications in drug delivery. Journal of Controlled Release. 2017;252:28–49. https://doi.org/10.1016/j.jconrel.2017.03.008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3