Microencapsulation by coacervation: Physicochemical and sensory properties of food flavorings

Author:

Moawad Shimaa1ORCID,El-Kalyoubi Mamdouh H.2,Khallaf Mohamed F.2,Gawad Ramadan A.1ORCID,Saed Badr3ORCID,Farouk Amr1ORCID

Affiliation:

1. National Research Centre

2. Ain Shams University

3. Al Azhar University

Abstract

Coacervation is a low-energy method that is ideal for encapsulating heat-sensitive materials, e.g., limonene, citral, linalool, and isoamyl acetate. This research used a simple coacervation method to prepare flavoring beads with alginate and Tween 80. The methods of scanning electron microscopy (SEM) and fourier transform infrared (FTIR) spectroscopy made it possible to study the morphology and structure of the flavoring beads. After the extraction, the flavor retention and structure were described using the method of gas chromatography with mass spectrometry (GC-MS). The microcapsules demonstrated a retention rate of 99.07–99.73% while the encapsulation efficiency remained as high as 96.40–97.07%. The microcapsules had a mononuclear structure and ranged from spherical to elongated ellipsoids; they were sealed without agglomeration. The particle size was below 1000 µm. The GC-MS chromatograms detected neither structural changes nor any new compounds. The FTIR spectra were similar to the control but demonstrated slight shifts, which suggested fundamental structural changes caused by the coacervation. We also fortified sponge cake and jelly with flavoring beads. The sensory analysis of the sponge cake samples revealed no significant differences compared to the control. All the fortified jelly samples had higher scores for smell, taste, texture, and overall preference than the control. The coacervation method proved to be an excellent solution for the problem of heat-sensitive flavorings that often lose quality or sensory attributes in food products that undergo extensive thermal treatment.

Publisher

Kemerovo State University

Reference33 articles.

1. Kazantseva EG, Lyamkin II. Micro-Ingredient Markets and Their Impact on the Sustainability of Food Systems. Food Processing: Techniques and Technology. 2023;53(1):202–216. (In Russ.). https://doi.org/10.21603/2074-9414-2023-1-2424, Kazantseva EG, Lyamkin II. Micro-Ingredient Markets and Their Impact on the Sustainability of Food Systems. Food Processing: Techniques and Technology. 2023;53(1):202–216. (In Russ.). https://doi.org/10.21603/2074-9414-2023-1-2424

2. Food flavorings market size, share & COVID-19 Impact analysis by type (natural and synthetic), by application (bakery, beverage, confectionery, dairy, convenience foods, snacks, and others), and regional forecast, 2021–2028. Market Research Report. 2022., Food flavorings market size, share & COVID-19 Impact analysis by type (natural and synthetic), by application (bakery, beverage, confectionery, dairy, convenience foods, snacks, and others), and regional forecast, 2021–2028. Market Research Report. 2022.

3. Cristina Ferrer Carneiro H, Hoster K, Reineccius G, Silvia Prata A. Flavoring properties that affect the retention of volatile components during encapsulation process. Food Chemistry: X. 2022;13. https://doi.org/10.1016/j.fochx.2022.100230, Cristina Ferrer Carneiro H, Hoster K, Reineccius G, Silvia Prata A. Flavoring properties that affect the retention of volatile components during encapsulation process. Food Chemistry: X. 2022;13. https://doi.org/10.1016/j.fochx.2022.100230

4. Moawad S, El-Kalyoubi M, Khallaf M, Abd El Mageed MA, Ali H, Farouk A. Influence of carriers on the functional properties of spray-dried flavorings during storage. Egyptian Journal of Food Science. 2021;49(1):1–8., Moawad S, El-Kalyoubi M, Khallaf M, Abd El Mageed MA, Ali H, Farouk A. Influence of carriers on the functional properties of spray-dried flavorings during storage. Egyptian Journal of Food Science. 2021;49(1):1–8.

5. Choudhury N, Meghwal M, Das K. Microencapsulation: An overview on concepts, methods, properties and applications in foods. Food Frontiers. 2021;2(4):426–442. https://doi.org/10.1002/fft2.94, Choudhury N, Meghwal M, Das K. Microencapsulation: An overview on concepts, methods, properties and applications in foods. Food Frontiers. 2021;2(4):426–442. https://doi.org/10.1002/fft2.94

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3