Digital transformation metamodel in smart farming: Crop classification prediction based on recurrent neural network

Author:

Rabhi Loubna1ORCID,Jabir Brahim1ORCID,Falih Noureddine1ORCID,Afraites Lekbir1ORCID,Bouikhalene Belaid1ORCID

Affiliation:

1. Sultan Moulay Slimane University

Abstract

Agriculture 4.0 is an opportunity for farmers to meet the current challenges in food production. It has become necessary to adopt a set of agricultural practices based on advanced technologies. Agriculture 4.0 enables farms to create added value by combining innovative technologies, such as precision agriculture, information and communication technology, robotics, and Big Data. As an enterprise, a connected farm is highly sensitive to strategic changes in organizational structures, objectives, modified variety, new business objects, processes, etc. To control the farm’s information system strategically, we proposed a metamodel based on the ISO/IS 19440 standard, where we added some new constructs relating to advanced digital technologies for smart and connected agriculture. We applied the proposed metamodel to the crop classification prediction process. This involved using machine learning methods such as recurrent neural networks to predict the type of crop being grown in a given agricultural area. Our research bridges farming with modern technology through our metamodel for a connected farm, promoting sustainability and efficiency. Furthermore, our crop classification study demonstrates the power of advanced machine learning, guided by our metamodel, in accurately predicting crop conditions, emphasizing its potential for crop management and food security. In essence, our work advances the transformative role of digital agriculture in modern farming.

Publisher

Kemerovo State University

Reference21 articles.

1. Yu L, Qin H, Xiang P. Incentive mechanism of different agricultural models to agricultural technology information management system. Sustainable Computing: Informatics and Systems. 2020;28:100423. https://doi.org/10.1016/j.suscom.2020.100423, Yu L, Qin H, Xiang P. Incentive mechanism of different agricultural models to agricultural technology information management system. Sustainable Computing: Informatics and Systems. 2020;28:100423. https://doi.org/10.1016/j.suscom.2020.100423

2. Mouratiadou I, Latka C, van der Hilst F, Müller C, Berges R, Bodirsky BL, et al. Quantifying sustainable intensification of agriculture: The contribution of metrics and modelling. Ecological Indicators. 2021;129:107870. https://doi.org/10.1016/j.ecolind.2021.107870, Mouratiadou I, Latka C, van der Hilst F, Müller C, Berges R, Bodirsky BL, et al. Quantifying sustainable intensification of agriculture: The contribution of metrics and modelling. Ecological Indicators. 2021;129:107870. https://doi.org/10.1016/j.ecolind.2021.107870

3. Radhi A. Design and Implementation of a Smart Farm System. Association of Arab Universities Journal of Engineering Sciences. 2017;24(3):227–241., Radhi A. Design and Implementation of a Smart Farm System. Association of Arab Universities Journal of Engineering Sciences. 2017;24(3):227–241.

4. Coble KH, Mishra AK, Ferrell S, Griffin T. Big data in agriculture: A challenge for the future. Applied Economic Perspectives and Policy. 2018;40(1):79–96. https://doi.org/10.1093/aepp/ppx056, Coble KH, Mishra AK, Ferrell S, Griffin T. Big data in agriculture: A challenge for the future. Applied Economic Perspectives and Policy. 2018;40(1):79–96. https://doi.org/10.1093/aepp/ppx056

5. Fielke S, Taylor B, Jakku E. Digitalisation of agricultural knowledge and advice networks: A state-of-the-art review. Agricultural Systems. 2020;180:102763. https://doi.org/10.1016/j.agsy.2019.102763, Fielke S, Taylor B, Jakku E. Digitalisation of agricultural knowledge and advice networks: A state-of-the-art review. Agricultural Systems. 2020;180:102763. https://doi.org/10.1016/j.agsy.2019.102763

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3