Mead fermentation parameters: Optimization by response surface methodology

Author:

Papuga Saša1,Pećanac Igor1,Stojković Maja1,Savić Aleksandar1,Velemir Ana1

Affiliation:

1. University of Banja Luka

Abstract

Introduction. This article presents the development of mathematical models related to the effect of the initial content of dry matter, yeast, and yeast energizer on the fermentation rate, the alcohol content, and the dry matter content in the finished product – mead. Study objects and methods. The mathematical models were developed by using the response surface methodology (RSM). The effect of yeast, dry matter, and yeast energizer contents were tested in concentration ranges of 150–600 mg/L, 16.3–24.4%, and 140–500 mg/L, respectively. The starting substrates used were honeydew honey and 10% apple juice. Yeast was rehydrated and added in different amounts to obtain required concentrations. Initial dry matter concentrations were measured by a refractometer. At the end of fermentation, oenological parameters of mead, namely dry matter content, pH, and ethanol yield, were determined according to standard methods. Results and discussion. The statistical estimation of the developed models and the individual model parameters showed that the initial dry matter content had a significant effect on the content of alcohol and dry matter in the final product. While, the initial content of yeast and yeast energizer did not have a significant effect in the tested concentration ranges. In addition, it was proved that the initial content of dry matter and yeast energizer had a significant effect on the fermentation rate, i.e. on the course of fermentation, which was described by a second-degree polynomial. Conclusion. We determined the optimum content of dry matter (24.4%), amount of yeast (150 mg/L), and concentration of yeast energizer (140 mg/L) in the initial raw material which provided the maximum alcohol yield at a consistent fermentation rate.

Publisher

Kemerovo State University

Subject

Food Science

Reference25 articles.

1. Khuri AI. A general overview of response surface methodology. Biometrics and Biostatistics International Journal. 2017;5(3):87–93. https://doi.org/10.15406/bbij.2017.05.00133., Khuri AI. A general overview of response surface methodology. Biometrics and Biostatistics International Journal. 2017;5(3):87–93. https://doi.org/10.15406/bbij.2017.05.00133.

2. Response surface designs [Internet]. [cited 2021 Aug 10]. Available from: https://www.statease.com/docs/v12/designs/rsm/#rsm., Response surface designs [Internet]. [cited 2021 Aug 10]. Available from: https://www.statease.com/docs/v12/designs/rsm/#rsm.

3. Myers RH, Montgomery DC. Response surface methodology: process and product optimization using designed experiments. New York: Wiley, 1995. 700 p., Myers RH, Montgomery DC. Response surface methodology: process and product optimization using designed experiments. New York: Wiley, 1995. 700 p.

4. Mumtaz MW, Adnan A, Mukhtar H, Rashid U, Danish M. Biodiesel production through chemical and biochemical transesterification: Trends, technicalities, and future perspectives. In: Rasul MG, Azad Akalam, Sharma SC, ediitors. Clean energy for sustainable development: Comparisons and contrasts of new approaches. Academic Press; 2017, pp. 465–485. https://doi.org/10.1016/B978-0-12-805423-9.00015-6., Mumtaz MW, Adnan A, Mukhtar H, Rashid U, Danish M. Biodiesel production through chemical and biochemical transesterification: Trends, technicalities, and future perspectives. In: Rasul MG, Azad Akalam, Sharma SC, ediitors. Clean energy for sustainable development: Comparisons and contrasts of new approaches. Academic Press; 2017, pp. 465–485. https://doi.org/10.1016/B978-0-12-805423-9.00015-6.

5. Jang S, Lee AY, Lee AR, Choi G, Kim HK. Optimization of ultrasound-assisted extraction of glycyrrhizic acid from licorice using response surface methodology. Integrative Medicine Research. 2017;6(4):388–394. https://doi.org/10.1016/j.imr.2017.08.003., Jang S, Lee AY, Lee AR, Choi G, Kim HK. Optimization of ultrasound-assisted extraction of glycyrrhizic acid from licorice using response surface methodology. Integrative Medicine Research. 2017;6(4):388–394. https://doi.org/10.1016/j.imr.2017.08.003.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Kinetic Modeling of Mead Production;Journal of the American Society of Brewing Chemists;2023-07-25

2. Systematic Approach to Optimize Technological and Economical Aspects of Atmospheric Plasma Sprayed Thermal Barrier Coatings;Advanced Engineering Materials;2023-06-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3