Affiliation:
1. All-Russian Research Institute of Canning Technology
Abstract
Introduction. Apple juice owes its beneficial properties to various biologically active compounds, e.g. antioxidants. Therefore, food science needs effective methods that would cover all the mechanisms of their effect on human metabolism. However, fruit juice production raises certain safety issues that are associated not only with production risks, but also with some natural components in the raw material. The Allium cepa test seems to be an effective solution to the problem. This plant bioassay has a good correlation tested on mammalian cell cultures.
Study objects and methods. Onion roots (A. cepa) were treated with aqueous solutions of juices and sorbic acid to assess their antioxidant profile. The toxic effects on root tissues were described according to biomass growth, malondialdehyde (MDA) concentration, and proliferative and cytogenetic disorders.
Results and discussion. The study revealed the optimal conditions for the A. cepa assay of the antioxidant properties of apple juice. The antioxidant activity was at its highest when the juice was diluted with water 1:9 and the onion roots were treated with sorbic acid. The lipid oxidation of the A. cepa roots decreased by 43%. A comparative analysis of three different juice brands showed that the difference in their antioxidant profiles was ≤ 3%. As for toxic side effects, the chromosome aberrations increased by six times in all samples.
Conclusion. The research offers a new in vivo method for determining the antioxidant profile of apple juice. Three juice brands proved to have irreversible cytotoxic and genotoxic effects.
Publisher
Kemerovo State University
Reference26 articles.
1. Boyer J, Liu R. Apple phytochemicals and their health benefits. Nutrition Journal. 2004;3. https://doi.org/10.1186/1475-2891-3-5., Boyer J, Liu R. Apple phytochemicals and their health benefits. Nutrition Journal. 2004;3. https://doi.org/10.1186/1475-2891-3-5.
2. Yong W, Amin L, Dongpo C. Status and prospects of nutritional cooking. Food Quality and Safety. 2019;3(3):137–143. https://doi.org/10.1093/fqsafe/fyz019., Yong W, Amin L, Dongpo C. Status and prospects of nutritional cooking. Food Quality and Safety. 2019;3(3):137–143. https://doi.org/10.1093/fqsafe/fyz019.
3. Van der Sluis AA, Dekker M, Skrede G, Jongen WMF. Activity and concentration of polyphenolic antioxidants in apple juice. 1. Effect of existing production methods. Journal of Agricultural and Food Chemistry. 2002;50(25):7211–7219. https://doi.org/10.1021/jf020115h., Van der Sluis AA, Dekker M, Skrede G, Jongen WMF. Activity and concentration of polyphenolic antioxidants in apple juice. 1. Effect of existing production methods. Journal of Agricultural and Food Chemistry. 2002;50(25):7211–7219. https://doi.org/10.1021/jf020115h.
4. Murtaza A, Iqbal A, Marszałek K, Iqbal MA, Ali SW, Xu X, et al. Enzymatic, phyto-, and physicochemical evaluation of apple juice under high-pressure carbon dioxide and thermal processing. Foods. 2020;9(2). https://doi.org/10.3390/foods9020243., Murtaza A, Iqbal A, Marszałek K, Iqbal MA, Ali SW, Xu X, et al. Enzymatic, phyto-, and physicochemical evaluation of apple juice under high-pressure carbon dioxide and thermal processing. Foods. 2020;9(2). https://doi.org/10.3390/foods9020243.
5. Khodos MYa, Kazakov YaE, Vidrevich MB, Brainina KhZ. Monitoring of oxidative stress in biological objects. Journal of Ural Medical Academic Science. 2017;14(3);262–274. (In Russ.)., Khodos MYa, Kazakov YaE, Vidrevich MB, Brainina KhZ. Monitoring of oxidative stress in biological objects. Journal of Ural Medical Academic Science. 2017;14(3);262–274. (In Russ.).
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献