Bovine serum albumin with gallic acid: Molecular modeling and physicochemical profiling

Author:

Fedortsov Nikita1,Budkevich Elena1,Evdokimov Ivan1,Ryabtseva Svetlana1,Budkevich Roman1

Affiliation:

1. North Caucasian Federal University

Abstract

Introduction. Gallic acid is a biologically active natural compound with strong antioxidant properties. Gallic acid is highly soluble and stable. It is known to increase the thermal stability of protein. However, its bioavailability is low, but interaction with proteins can solve this problem. Bovine serum albumin can bind various ligands, including polyphenols. The resulting complex of gallic acid and bovine serum albumin can become a promising functional food additive. Study objects and methods. This research featured in silico molecular modeling of gallic acid and bovine serum albumin using the HyperChem program. The methods of infrared spectrometry, potentiometry, and sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) made it possible to describe the physicochemical profile of the complex. Results and discussion. The molecular modeling confirmed that hydrophobic interactions were responsible for the chemical bond between gallic acid and bovine serum albumin. The SDS-PAGE test showed that the protein molecule remained intact. The reducing properties of the complex grew as the concentration of gallic acid increased. At 100 mg/L of gallic acid, the reducing properties were 7.8 ± 1.3 mg/L equivalent of gallic acid. At 200 and 300 mg/L, the values reached 15.90 ± 2.65 and 23.30 ± 5.05 mg/L, respectively. The IR spectrometry revealed a significant difference between the samples with different concentrations of gallic acid. Conclusion. The research managed to predict the properties of the complex of bovine serum albumin and gallic acid during its formation. The resulting complex had the highest reducing properties at 0.69 g of bovine serum albumin and 300 mg of gallic acid. The obtained parameters can be used in the food industry to develop new food additives.

Publisher

Kemerovo State University

Subject

Food Science

Reference38 articles.

1. Prasad AR, Basheer SM, Gupta IR, Elyas KK, Joseph A. Investigation on Bovine Serum Albumin (BSA) binding efficiency and antibacterial activity of ZnO nanoparticles. Materials Chemistry and Physics. 2020;240. https://doi.org/10.1016/j.matchemphys.2019.122115., Prasad AR, Basheer SM, Gupta IR, Elyas KK, Joseph A. Investigation on Bovine Serum Albumin (BSA) binding efficiency and antibacterial activity of ZnO nanoparticles. Materials Chemistry and Physics. 2020;240. https://doi.org/10.1016/j.matchemphys.2019.122115.

2. Davoodi SH, Shahbazi R, Esmaeili S, Sohrabvandi S, Mortazavian A, Jazayeri S, et al. Health-related aspects of milk proteins. Iranian Journal of Pharmaceutical Research . 2016;15(3):573–591. https://doi.org/10.22037/ijpr.2016.1897., Davoodi SH, Shahbazi R, Esmaeili S, Sohrabvandi S, Mortazavian A, Jazayeri S, et al. Health-related aspects of milk proteins. Iranian Journal of Pharmaceutical Research . 2016;15(3):573–591. https://doi.org/10.22037/ijpr.2016.1897.

3. McCabe BK, Harris PW, Schmidt T, Antille DL, Lee S, Hill A, et al. Bioenergy and bioproducts in the Australian red meat processing industry: A case study. ASABE 2018 Annual International Meeting. 2018. https://doi.org/10.13031/aim.201800980., McCabe BK, Harris PW, Schmidt T, Antille DL, Lee S, Hill A, et al. Bioenergy and bioproducts in the Australian red meat processing industry: A case study. ASABE 2018 Annual International Meeting. 2018. https://doi.org/10.13031/aim.201800980.

4. Richert ME, García Rey N, Braunschweig B. Charge-controlled surface properties of native and fluorophore-labeled bovine serum albumin at the air-water interface. Journal of Physical Chemistry B. 2018;122(45):10377–10383. https://doi.org/10.1021/acs.jpcb.8b06481., Richert ME, García Rey N, Braunschweig B. Charge-controlled surface properties of native and fluorophore-labeled bovine serum albumin at the air-water interface. Journal of Physical Chemistry B. 2018;122(45):10377–10383. https://doi.org/10.1021/acs.jpcb.8b06481.

5. Arabi SH, Aghelnejad B, Schwieger C, Meister A, Kerth A, Hinderberger D. Serum albumin hydrogels in broad pH and temperature ranges: Characterization of their self-assembled structures and nanoscopic and macroscopic properties. Biomaterials Science. 2018;6(3):478–492. https://doi.org/10.1039/c7bm00820a., Arabi SH, Aghelnejad B, Schwieger C, Meister A, Kerth A, Hinderberger D. Serum albumin hydrogels in broad pH and temperature ranges: Characterization of their self-assembled structures and nanoscopic and macroscopic properties. Biomaterials Science. 2018;6(3):478–492. https://doi.org/10.1039/c7bm00820a.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3