Antagonistic activity of synbiotics: Response surface modeling of various factors

Author:

Evdokimova Svetlana1,Karetkin Boris1,Zhurikov Mikhail1,Guseva Elena1,Khabibulina Natalia1,Shakir Irina1,Panfilov Victor1

Affiliation:

1. Dmitry Mendeleev University of Chemical Technology of Russia

Abstract

Synbiotic compositions have a great potential for curing microbial intestinal infections. Novel targeted synbiotics are a promising field of the modern functional food industry. The present research assessed the effect of various fructan fractions, initial probiotic counts, and test strains on the antagonistic properties of synbiotics. The research involved powdered roots of Arctium lappa L. and strains of Bifidobacterium bifidum, Bacillus cereus, and Salmonella enterica. The experiment was based on the central composite rotatable design. A water extract of A. lappa roots was purified and concentrated. Fructan fractions were precipitated at various concentrations of ethanol, dried, and sub jected to carbon-13 nuclear magnetic resonance (13C-NMR) spectrometry. The bifidobacteria and the test strains were co-cultivated in the same medium that contained one of the fractions. Co-cultivation lasted during 10 h under the same conditions. The acid concentrations were determined by high-performance liquid chromatography to define the synbiotic factor. The obtained fructans were closer to commercial oligofructose in terms of the number and location of NMR peaks. However, they were between oligofructose and inulin in terms of signal intensity. The response surface analysis for bacilli showed that the minimal synbiotic factor value corresponded to the initial probiotic count of 7.69 log(CFU/mL) and the fructan fraction precipitated by 20% ethanol. The metabolites produced by the bacilli also affected their growth. The synbiotic factor response surface for the experiments with Salmonella transformed from parabolic to saddle shape as the initial test strain count increased. The minimal synbiotic factor value corresponded to the lowest precipitant concentration and the highest probiotic count. The research established a quantitative relationship between the fractional composition of fructans and the antagonistic activity of the synbiotic composition with bifidobacteria. It also revealed how the ratio of probiotic and pathogen counts affects the antagonism. The proposed approach can be extrapolated on other prebiotics and microbial strains in vivo.

Publisher

Kemerovo State University

Subject

Food Science

Reference43 articles.

1. Heintz-Buschart A, Wilmes P. Human gut microbiome: Function matters. Trends in Microbiology. 2018;26(7):563–574. https://doi.org/10.1016/j.tim.2017.11.002, Heintz-Buschart A, Wilmes P. Human gut microbiome: Function matters. Trends in Microbiology. 2018;26(7):563–574. https://doi.org/10.1016/j.tim.2017.11.002

2. Martín MÁ, Ramos S. Impact of dietary flavanols on microbiota, immunity and inflammation in metabolic diseases. Nutrients. 2021;13(3). https://doi.org/10.3390/nu13030850, Martín MÁ, Ramos S. Impact of dietary flavanols on microbiota, immunity and inflammation in metabolic diseases. Nutrients. 2021;13(3). https://doi.org/10.3390/nu13030850

3. von Martels JZH, Sadaghian Sadabad M, Bourgonje AR, Blokzijl T, Dijkstra G, Faber KN, et al. The role of gut microbiota in health and disease: In vitro modeling of host-microbe interactions at the aerobe-anaerobe interphase of the human gut. Anaerobe. 2017;44:3–12. https://doi.org/10.1016/j.anaerobe.2017.01.001, von Martels JZH, Sadaghian Sadabad M, Bourgonje AR, Blokzijl T, Dijkstra G, Faber KN, et al. The role of gut microbiota in health and disease: In vitro modeling of host-microbe interactions at the aerobe-anaerobe interphase of the human gut. Anaerobe. 2017;44:3–12. https://doi.org/10.1016/j.anaerobe.2017.01.001

4. Kamada N, Kim Y-G, Sham HP, Vallance BA, Puente JL, Martens EC, et al. Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science. 2012;336(6086):1325–1329. https://doi.org/10.1126/science.1222195, Kamada N, Kim Y-G, Sham HP, Vallance BA, Puente JL, Martens EC, et al. Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science. 2012;336(6086):1325–1329. https://doi.org/10.1126/science.1222195

5. Rolhion N, Chassaing B. When pathogenic bacteria meet the intestinal microbiota. Philosophical Transactions of the Royal Society B: Biological Sciences. 2016;371(1707). https://doi.org/10.1098/rstb.2015.0504, Rolhion N, Chassaing B. When pathogenic bacteria meet the intestinal microbiota. Philosophical Transactions of the Royal Society B: Biological Sciences. 2016;371(1707). https://doi.org/10.1098/rstb.2015.0504

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3