Mechanically activated hydrolysis of plant-derived proteins in food industry

Author:

Gavrilova Karina12,Bychkov Aleksey13,Bychkova Elena3,Akimenko Zoya1,Chernonosov Aleksandr4,Kalambet Yurii5,Lomovskii Oleg1

Affiliation:

1. Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch of the Russian Academy of Sciences

2. Novosibirsk State University

3. Novosibirsk State Technical University

4. Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences

5. OOO ‘Ampersend’

Abstract

A poor consumption of important nutrients triggered a public interest in functional foods that contain easy-to-digest proteins. The present research features fractionation, mechanical activation, and enzymatic hydrolysis of pea protein. According to modern chemical methods, the protein content in the original pea biomass was 24.3% and its molecular weight distribution (MWD) was 5–135 kDa. Fractionation, or protein displacement, resulted in four fractions of biopolymers with different chemical composition, i.e. a different content of protein and carbohydrate molecules. The paper introduces some data on the enzymatic transformations of the substrate. A set of experiments made it possible to define the optimal conditions for the mechanical activation of pea biomass with proteolytic enzymes. The enzymes were obtained from Protosubtilin G3x, a complex enzyme preparation. When the substrate and the enzymes were mechanically activated together, it produced mechanocomposite, an intermediate product with increased reactivity. It increased the specific surface area by 3.2 times and doubled the crystallinity of the substrate. As a result, the rate and yield of the subsequent enzymatic hydrolysis increased from 18% to 61%. The study determined the capacity of the substrate in relation to the enzyme preparation. Under optimal conditions, the pea hydrolysis destroyed protein molecules within two hours. After four hours of hydrolysis, no changes were detected. A polyacrylamide gel electrophoresis revealed non-hydrolysed protein molecules with MW ≈ 20 kDa. Presumably, they corresponded with legumin, which is resistant to neutral and alkaline proteases. The resulting hydrolysates were spray-dried to test their potential use as a food component. The product obtained by spray-drying had a monomodal distribution of particle sizes of spherical shape with adiameter of 5–20 μm.

Publisher

Kemerovo State University

Subject

Food Science

Reference40 articles.

1. European Commission. Horizon 2020: Annual Monitoring Report. Publications Office of the European Union; 2015. DOI: https://doi.org/10.2777/32., European Commission. Horizon 2020: Annual Monitoring Report. Publications Office of the European Union; 2015. DOI: https://doi.org/10.2777/32.

2. Ulberth F, Maragkoudakis P, Czimbalmos A, Wollgast J, Rzychon M, Caldeira S, et al. Tomorrow’s healthy society. Research priorities for foods and diets: final report – Study. Luxemburg: Publications Office of the European Union; 2014. 116 p. DOI: https://doi.org/10.2788/1395., Ulberth F, Maragkoudakis P, Czimbalmos A, Wollgast J, Rzychon M, Caldeira S, et al. Tomorrow’s healthy society. Research priorities for foods and diets: final report – Study. Luxemburg: Publications Office of the European Union; 2014. 116 p. DOI: https://doi.org/10.2788/1395.

3. Bannikova AV, Evdokimov IA. The scientific and practical principles of creating products with increased protein content. Foods and Raw Materials. 2015;3(2):3–12. DOI: https://doi.org/10.12737/13114., Bannikova AV, Evdokimov IA. The scientific and practical principles of creating products with increased protein content. Foods and Raw Materials. 2015;3(2):3–12. DOI: https://doi.org/10.12737/13114.

4. Salvatore S, Vandenplas Y. Hydrolyzed Proteins in Allergy. In: Bhatia J, Shamir R, Vandenplas Y, editors. Protein in Neonatal and Infant Nutrition: Recent Updates. Basel: Nestec; 2016. pp. 11–27. DOI: https://doi.org/10.1159/000442699., Salvatore S, Vandenplas Y. Hydrolyzed Proteins in Allergy. In: Bhatia J, Shamir R, Vandenplas Y, editors. Protein in Neonatal and Infant Nutrition: Recent Updates. Basel: Nestec; 2016. pp. 11–27. DOI: https://doi.org/10.1159/000442699.

5. Barać M, Cabrilo S, Pešić M, Stanojević S, Pavlićević M, Maćej O, et al. Functional properties of pea (Pisum sativum, L.) protein isolates modified with chymosin. International Journal of Molecular Sciences. 2011;12(12):8372–8387. DOI: https://doi.org/10.3390/ijms12128372., Barać M, Cabrilo S, Pešić M, Stanojević S, Pavlićević M, Maćej O, et al. Functional properties of pea (Pisum sativum, L.) protein isolates modified with chymosin. International Journal of Molecular Sciences. 2011;12(12):8372–8387. DOI: https://doi.org/10.3390/ijms12128372.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3