The microorganism-plant system for remediation of soil exposed to coal mining

Author:

Drozdova Margarita1,Pozdnyakova Anna1,Osintseva Maria1,Burova Nadezhda1,Minina Varvara1

Affiliation:

1. Kemerovo State University

Abstract

Introduction. Coal mining causes a radical transformation of the soil cover. Research is required into modern methods and complementary technologies for monitoring technogenic landscapes and their remediation. Our study aimed to assess soil and rhizosphere microorganisms and their potential uses for the remediation of technogenic soils in Russian coal regions. Study objects and methods. We reviewed scientific articles published over the past five years, as well as those cited in Scopus and Web of Science. Results and discussion. Areas lying in the vicinity of coal mines and coal transportation lines are exposed to heavy metal contamination. We studied the application of soil remediation technologies that use sorbents from environmentally friendly natural materials as immobilizers of toxic elements and compounds. Mycorrhizal symbionts are used for soil decontamination, such as arbuscular mycorrhiza with characteristic morphological structures in root cortex cells and some mycotallia in the form of arbuscules or vesicles. Highly important are Gram-negative proteobacteria (Agrobacterium, Azospirillum, Azotobacter, Burkholderia, Bradyrizobium, Enterobacter, Pseudomonas, Klebsiella, Rizobium), Gram-positive bacteria (Bacillus, Brevibacillus, Paenibacillus), and Grampositive actinomycetes (Rhodococcus, Streptomyces, Arhtrobacter). They produce phytohormones, vitamins, and bioactive substances, stimulating plant growth. Also, they reduce the phytopathogenicity of dangerous diseases and harmfulness of insects. Finally, they increase the soil’s tolerance to salinity, drought, and oxidative stress. Mycorrhizal chains enable the transport and exchange of various substances, including mineral forms of nitrogen, phosphorus, and organic forms of C3 and C4 plants. Microorganisms contribute to the removal of toxic elements by absorbing, precipitating or accumulating them both inside the cells and in the extracellular space. Conclusion. Our review of scientific literature identified the sources of pollution of natural, agrogenic, and technogenic landscapes. We revealed the effects of toxic pollutants on the state and functioning of living systems: plants, animals, and microorganisms. Finally, we gave examples of modern methods used to remediate degraded landscapes and reclaim disturbed lands, including the latest technologies based on the integration of plants and microorganisms.

Publisher

Kemerovo State University

Subject

Food Science

Reference93 articles.

1. Dobrovolʹskiy GV. Degradatsiya i okhrana pochv [Soil degradation and protection]. Moscow: Lomonosov Moscow State University; 2002. 654 p. (In Russ.)., Dobrovolʹskiy GV. Degradatsiya i okhrana pochv [Soil degradation and protection]. Moscow: Lomonosov Moscow State University; 2002. 654 p. (In Russ.).

2. Kudeyarov VN, Sokolov MS, Glinushkin AP. The soils of agrocenosis in Russia: current status, measures for improvement and rational use. Agrohimia. 2017;(6):3–11. (In Russ.). https://doi.org/10.7868/S0002188117060011., Kudeyarov VN, Sokolov MS, Glinushkin AP. The soils of agrocenosis in Russia: current status, measures for improvement and rational use. Agrohimia. 2017;(6):3–11. (In Russ.). https://doi.org/10.7868/S0002188117060011.

3. Androkhanov VA, Kulyapina ED, Kurachev VM. The soils of technogenic landscapes: genesis and evolution. Novosibirsk: Siberian Branch of the RAS; 2004. 151 p. (In Russ.)., Androkhanov VA, Kulyapina ED, Kurachev VM. The soils of technogenic landscapes: genesis and evolution. Novosibirsk: Siberian Branch of the RAS; 2004. 151 p. (In Russ.).

4. Androkhanov VA. Pochvenno-ehkologicheskoe sostoyanie tekhnogennykh landshaftov: dinamika i otsenka [Ecological state of technogenic landscapes: dynamics and assessment]. Novosibirsk: Siberian Branch of the RAS; 2010. 224 p. (In Russ.)., Androkhanov VA. Pochvenno-ehkologicheskoe sostoyanie tekhnogennykh landshaftov: dinamika i otsenka [Ecological state of technogenic landscapes: dynamics and assessment]. Novosibirsk: Siberian Branch of the RAS; 2010. 224 p. (In Russ.).

5. Belozertseva IA, Granina NI. Influence of investigation, extraction and processing of minerals on ground of Siberia. Fundamental research. 2015;(10–2):238–242. (In Russ.)., Belozertseva IA, Granina NI. Influence of investigation, extraction and processing of minerals on ground of Siberia. Fundamental research. 2015;(10–2):238–242. (In Russ.).

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Composite exopolysaccharide-based hydrogels extracted from Nostoc commune V. as scavengers of soluble methylene blue;Foods and Raw Materials;2023-05-29

2. Microorganisms for Bioremediation of Soils Contaminated with Heavy Metals;Microorganisms;2023-03-28

3. Evaluating extremophilic microorganisms in industrial regions;Foods and Raw Materials;2023-03-17

4. STUDY OF ANTIOXIDANT ACTIVITY OF MICROBIOTA OF KUZBASS TECHNOZEMS;Proceedings of the 1st International Congress "The Latest Achievements of Medicine, Healthcare, and Health-Saving Technologies";2023-02-16

5. Evaluating the Vegetation Development of Coal-Mine Dumps;Food Processing: Techniques and Technology;2022-12-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3