Natural Language Processing Tools for Predictive Modeling of Advanced Trends in Formal Ontologies in Biomedical Sciences

Author:

Charnine M. M.1ORCID,Kalinin S. S.2ORCID

Affiliation:

1. Computer Science and Control Federal Research Center, Russian Academy of Sciences

2. International Slavic Institute

Abstract

Natural language processing methods can be used to predict advanced application trends in formal ontologies. Formal ontologies help to formalize the characteristics of objects in various domains. As a result, machine learning programs identify patterns and relationships between these characteristics. The article describes an experiment based on machine learning methods in combination with text search methods. It involves the CatBoost algorithm for predictive modeling and clustering of lexical items. The vector models of the corresponding items reflect a trend in a particular domain of knowledge; proximity between them was calculated based on the idea of semantic distance. The experiment revealed four advanced areas for formal ontologies, i.e., genotype – phenotype; personalization; clustering algorithms, and collaborative task management. Each area that represented the predictable trends of development in this particular domain was provided with keywords. The article also contains a review of most popular scientific articles on these trends.

Publisher

Kemerovo State University

Reference26 articles.

1. Bova V. V., Leshchanov D. B., Kravchenko D. Yu., Novikov A. A. Computational ontology: Objectives and methodology of construction. Informatika, vychislitelnaia tekhnika i inzhenernoe obrazovanie, 2014, (4): 44–55. (In Russ.) https://www.elibrary.ru/ubnfff

2. Korsun I. A., Palchunov D. E. Methods of data retrieving from texts written in natural language and formal representation of ontological knowledges. Knowledges – Ontologies – Theories (ZONT-2017): Proc. All-Russian Sci. Conf. with Intern. Participation, Novosibirsk, 2–6 Oct 2017. Novosibirsk: Digit Pro, 2017, vol. 2, 21–25. (In Russ.) https://www.elibrary.ru/eidazb

3. Mitrofanova O. A., Azarova I. V. Computational representation of meanings. Applied and computational linguistics, eds. Nikolaev I. S., Mitrenina O. V., Lando T. M. 2nd ed. Moscow: Lenand, 2017, 59–93. (In Russ.) https://www.elibrary.ru/zcwtrj

4. Charnine M. M. A bibliometric analysis of trending topics in the English language linguistics research literature. Russian Linguistic Bulletin, 2023, (12). (In Russ.) https://doi.org/10.18454/RULB.2023.48.17

5. Bukhari A. C., Kim Y.-G. Integration of a secure type-2 fuzzy ontology with a multi-agent platform: A proposal to automate the personalized flight ticket booking domain. Information Sciences, 2012, 198: 24–47. https://doi.org/10.1016/j.ins.2012.02.036

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3