Strategizing for Productivity Growth in Digital Economy

Author:

Zhuravlev Denis1,Chaadaev Vitaly1

Affiliation:

1. Lomonosov Moscow State University

Abstract

The solution of the issues of increasing labor productivity is significant at the state, regional, corporate and project levels. The purpose of the article is to form a systemic and conscious perception by senior managers of the role of digital technologies and modern methods of big data processing in solving the problems of increasing labor productivity, the importance of the strategizing methodology for finding and recording points of growth of added value at the enterprise. Based on the scientific works of Academicians Askar A. Akayev and Viktor A. Sadovnichy, a review of the predicted changes in the main subsystems of the World-System is conducted, it is shown that under these conditions the relevance of a comprehensive analysis that takes into account not only long-term trends, but also the interaction of all important factors: technology, demography, economics, sociosphere, politics, etc. increases many times over. The methodological basis of the study is formed by the fundamental laws and rules of the methodology of strategizing of Academician Vladimir L. Kvint. It is shown that the instrument for the practical implementation of the system of strategic management of labor productivity growth processes is digital transformation. The solution to the problem of increasing labor productivity is provided by the large-scale implementation of end-to-end digital technologies in the production life cycle, ensuring the convergence of human and intelligent machine labor - automatic execution of the overwhelming majority of routine operations and offering the best possible solution to a person. The process of managing the strategic process of increasing labor productivity consists of the following stages: monitoring and analysis of indicators; identifying potential growth points; building a digital model of the process and conducting simulation experiments; developing organizational and technical measures and creating a decision support management system. A decisive factor for enterprises seeking to increase labor productivity is the use of artificial intelligence to automate everyday tasks, which allows employees to focus on more strategic activities.

Publisher

Kemerovo State University

Reference38 articles.

1. Аганбегян А. Г. Экономико-математические методы и модели оптимального отраслевого планирования. Москва, 1969. 72 с., Aganbegyan AG. Ekonomiko-matematicheskiye metody i modeli optimal'nogo otraslevogo planirovaniya [Economic and mathematical methods and models of optimal industrial planning]. Moscow; 1969. 72 p. (In Russ.)

2. Акаев А. А. Эпохальные открытия Николая Кондратьева и их место в современной экономической науке // AlterEconomics. 2022. Т. 19. № 1. С. 11–39. https://doi.org/10.31063/AlterEconomics/2022.19-1.2, Akaev AA. Nikolai Kondratiev’s Epoch-Making Discoveries and their Impact on Contemporary Economic Science. AlterEconomics. 2022;19(1):11–39. (In Russ.) https://doi.org/10.31063/AlterEconomics/2022.19-1.2

3. Акаев А. А., Садовничий В. А. Человеческий фактор как определяющий производительность труда в эпоху цифровой экономики // Проблемы прогнозирования. 2021. № 1(184). С. 45–58. https://doi.org/10.47711/0868-6351-184-45-58, Akaev AA, Sadovnichii VA. The human component as a determining factor of labor productivity in the digital economy. Studies on Russian Economic Development. 2021:32(1);29–36. (In Russ.) https://doi.org/10.47711/0868-6351-184-45-58

4. Анализ и моделирование мировой и страновой динамики / В. А. Садовничий [и др.]. Москва: ЛЕНАНД, 2017. 352 с., Sadovnichy VA, Akayev AA, Korotayev AV, Malkov SV, Sokolov VN. Analiz i modelirovaniye mirovoy i stranovoy dinamiki [Analysis and modeling of world and country dynamics]. Moscow: LENAND; 2017. 352 p. (In Russ.)

5. Белов В. И. Производительность труда как инструмент повышения экономического роста и социального благополучия граждан России // Управленческое консультирование. 2020. № 8. С. 123–131. https://doi.org/10.22394/1726-1139-2020-8-123-131, Belov VI. Labor productivity as a tool for increasing economic growth and social well-being of Russian citizens. Administrative Consulting. 2020;(8):123–131. (In Russ.) https://doi.org/10.22394/1726-1139-2020-8-123-131

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3