Strategizing Fund Raising in Data Economy

Author:

Morozov Alexander1,Tishchenko Elena1,Slavyantsev Maksim2

Affiliation:

1. Lomonosov Moscow State University

2. “Alpha Reem Consulting” LLC

Abstract

Artificial intelligence and machine learning methods build investment routes to balance models between private and public sources of financing. In this respect, they are of national importance for import substitution and technological sovereignty. Decision support systems build business development scenarios based on marked-up data. They reduce the risks of projects connected with import substitution and national technological sovereignty. Early integrated planning and balancing of developer and investor capabilities can help other venture and high-tech projects by balancing various sources of private and government financing. This article introduces a new development method of machine learning and artificial intelligence based on an ultraprecise neural network. The method automates the task of navigating technological projects using investment financing tools. It builds a continuous multi-agent investment route to reduce the risks of technological projects in terms of private and government investments. In fact, the method offers an algorithm that connects the fundraising stage, the type of project, and the type of funding source. The research objective was to strategize the development, implementation, and scaling of artificial intelligence methods and scenario multi-agent modeling to solve economic coordination tasks of raising public and private funds by personal investment routes and integrated investment routes. The authors rationalized the development, implementation, and scaling of personal and integrated investment routes, defined the development principles, and designed a checklist. They also developed a methodology for using artificial intelligence algorithms. The practical part featured a case of strategizing regional economic potentials in terms of raising additional funds by multi-agent modeling of financial and economic interaction of individual investment projects and integrated investment projects. The authors assessed the long-term multiplicative effect of investment projects on sectoral and intersectoral cooperation, which increases the regional investment attractiveness. The study relied on the theory of strategy and methodology of strategizing developed by Professor Vladimir L. Kvint.

Publisher

Kemerovo State University

Reference36 articles.

1. Бахвалов Л. А. Моделирование систем. М.: Московский государственный горный университет, 2006. 294 с., Bakhvalov LA. Modelirovanie system [System modeling]. Moscow: Moscow State Mining University; 2006. 294 p. (In Russ.)

2. Квинт В. Л. Стрaтегическое упрaвление и экономикa нa глобaльном формирующемся рынке. М.: Бизнес Aтлaс, 2012. 627 c., Kvint VL. Global emerging market: strategic management and economics. Moscow: Biznes atlas; 2012. 627 p. (In Russ.)

3. Квинт В. Л. Концепция стратегирования. T. 1. СПб.: СЗИУ РАНХиГС, 2019. 132 с., Kvint VL. The concept of strategizing. Vol. 1. St. Petersburg: NWIM RANEPA; 2019. 132 p. (In Russ.)

4. Квинт В. Л., Хворостяная А. С., Сасаев Н. И. Авангардные технологии в процессе стратегирования // Экономика и управление. 2020. Т. 26. № 11. С. 1170–1179. https://doi.org/10.35854/1998-1627-2020-11-1170-1179, Kvint VL, Khvorostyanaya AS, Sasaev NI. Advanced technologies in strategizing. Economics and Management. 2020;26(11):1170–1179. (In Russ.) https://doi.org/10.35854/1998-1627-2020-11-1170-117

5. Кондратьев В. В. Модельно-ориентированный системный инжиниринг 2.0. М.: МФТИ, 2021., Kondratʹev VV. Modelʹno-orientirovannyy sistemnyy inzhiniring 2.0 [Model-Based Systems Engineering 2.0]. Moscow: MFTI; 2021. (In Russ.)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3