Integrated Risk Management System in Food Production: Theory and Model

Author:

Voloshina Elena1,Dunchenko Nina2ORCID

Affiliation:

1. Russian State Agrarian University, K. A. Timiryazev Moscow Agricultural Academy

2. Russian State Agrarian University – Moscow Timiryazev Agricultural Academy

Abstract

Every enterprise in the food and food-processing industry needs a risk-based approach that could help it operate in the current conditions of constant changes and uncertainty. As management and technological risk approaches tend to integrate, risk management technologies have to be adapted to enterprise processes in order to minimize hazardous factors in food production. This article introduces a model of an integrated risk management system for raw materials and animal products. The model covers both risk management methods of food production and risk management tools. The authors defined nine principles for developing quality and safety indicators in the sphere of producing foods of animal origin. The program for assessing a risk event facilitates decision-making when it comes to reducing human factor risks. Other tools include a three-dimensional risk assessment matrix, as well as profiles and risk registers for rapid data processing during decision-making. The aggregate system makes it possible to minimize the negative consequences for all risk groups, as well as to use the positive results of risk events to fuel further industrial development.

Publisher

Kemerovo State University

Reference10 articles.

1. Dunchenko, N. I. Complex estimation of effectiveness of quality system processes at food industry enterprises / N. I. Dunchenko, E. S. Voloshina, S. V. Kuptsova [et al.] // Foods and Raw Materials. 2018. Vol. 6, № 1. P. 182–190. https://www.doi.org/10.21603/2308-4057-2018-1-182-190., Dunchenko, N. I. Complex estimation of effectiveness of quality system processes at food industry enterprises / N. I. Dunchenko, E. S. Voloshina, S. V. Kuptsova [et al.] // Foods and Raw Materials. 2018. Vol. 6, № 1. P. 182–190. https://www.doi.org/10.21603/2308-4057-2018-1-182-190.

2. Лисицын, А. Б. От продовольственной безопасности к безопасности и качеству продовольствия / А. Б. Лисицын, И. М. Чернуха, О. И. Лунина // Пищевая промышленность. 2021. № 2. С. 8–14. https://doi.org/10.24412/0235-2486-2021-2-0010; https://www.elibrary.ru/diwsze, Lisicyn, A. B. Ot prodovol'stvennoy bezopasnosti k bezopasnosti i kachestvu prodovol'stviya / A. B. Lisicyn, I. M. Chernuha, O. I. Lunina // Pischevaya promyshlennost'. 2021. № 2. S. 8–14. https://doi.org/10.24412/0235-2486-2021-2-0010; https://www.elibrary.ru/diwsze

3. Donaghy, J. A. Big Data Impacting Dynamic Food Safety Risk Management in the Food Chain / A. J. Donaghy [et al.] // Frontiers in Microbiology. 2021. Vol. 12. https://www.doi.org/10.3389/fmicb.2021.668196, ISSN=1664-302X, Donaghy, J. A. Big Data Impacting Dynamic Food Safety Risk Management in the Food Chain / A. J. Donaghy [et al.] // Frontiers in Microbiology. 2021. Vol. 12. https://www.doi.org/10.3389/fmicb.2021.668196, ISSN=1664-302X

4. Янковская, В. С. Методология квалиметрии рисков как основа обеспечения качества и безопасности продукции / В. С. Янковская, Н. И. Дунченко, Е. С. Волошина [и др.] // Молочная промышленность. 2021. № 11. С. 52–53. https://www.doi.org/10.31515/1019-8946-2021-11-52-53; https://www.elibrary.ru/tlmczg, Yankovskaya, V. S. Metodologiya kvalimetrii riskov kak osnova obespecheniya kachestva i bezopasnosti produkcii / V. S. Yankovskaya, N. I. Dunchenko, E. S. Voloshina [i dr.] // Molochnaya promyshlennost'. 2021. № 11. S. 52–53. https://www.doi.org/10.31515/1019-8946-2021-11-52-53; https://www.elibrary.ru/tlmczg

5. Олсуфьева, Е. Н. Обзор рисков контаминации антибиотиками молочной продукции / Е. Н. Олсуфьева, В. С. Янковская, Н. И. Дунченко // Антибиотики и химиотерапия. 2022. Т. 67, № 7–8. С. 82–96. https://www.doi.org/10.37489/0235-2990-2022-67-7-8-82-96; https://www.elibrary.ru/zrbupf, Olsuf'eva, E. N. Obzor riskov kontaminacii antibiotikami molochnoy produkcii / E. N. Olsuf'eva, V. S. Yankovskaya, N. I. Dunchenko // Antibiotiki i himioterapiya. 2022. T. 67, № 7–8. S. 82–96. https://www.doi.org/10.37489/0235-2990-2022-67-7-8-82-96; https://www.elibrary.ru/zrbupf

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3