Statistical Optimization of Regional Economy Indices in a Heterogeneous Changeable Environment

Author:

Cherkashin Alexandr1,Myadzelets Anastasia1

Affiliation:

1. Sochava Institute of Geography, Siberian branch of the Russian Academy of Science

Abstract

The authors modelled the development of a regional socio-economic situation using static optimization of an unknown function that describes the relationship between the economic parameters of a territorial system. They applied the Bayesian approach to formalize relations, identify optimization parameters, classify the situation of geographically homogeneous economic systems, and describe the transformation of socio-economic regimes. By using variables and coefficients as bilinear characteristics, they reflected the unity of internal and external system properties, as well as the joint effect of geographical and historical economic factors and conditions. The analysis of regional economic indices revealed the empirical dependence of domestic investment on industry and agriculture in the Russian regions in 2000–2016. The results show some patterns of investment and production processes in the Irkutsk region economy in the pre-crisis, crisis, and post-crisis periods. For industrial production, the changes in the investment environment corresponded to 2000–2006, 2006–2008, and 2008–2016. Agricultural production demonstrated no such relationship. Therefore, the geo-economic conditions change the environmental indicators of the regional system that affects the optimal investment solutions made by economic activity subjects.

Publisher

Kemerovo State University

Subject

Applied Mathematics,General Mathematics

Reference38 articles.

1. Hatanaka M. Time series-based econometrics: unit roots and cointegration. Oxford: Oxford University Press, 1996, 312. https://doi.org/10.1093/0198773536.001.0001, Hatanaka M. Time series-based econometrics: unit roots and cointegration. Oxford: Oxford University Press, 1996, 312. https://doi.org/10.1093/0198773536.001.0001

2. Maddala G. S., Kim In-Moo. Unit roots, cointegration, and structural change. Cambridge: Cambridge University Press, 1998, 505., Maddala G. S., Kim In-Moo. Unit roots, cointegration, and structural change. Cambridge: Cambridge University Press, 1998, 505.

3. Носко В. П. Эконометрика. Введение в регрессионный анализ временных рядов. М.: МФТИ, 2002. 273 с., Nosko V. P. Econometrics. Introduction to time series regression analysis. Moscow: MIPT, 2002, 273. (In Russ.)

4. Носко В. П. Эконометрика. М.: Дело, 2011. Кн. 1. 672 с., Nosko V. P. Econometrics. Moscow: Delo, 2011, book 1, 672. (In Russ.)

5. Васильев Ф. П. Методы решения экстремальных задач. М.: Наука, 1981. 400 с., Vasilyev F. P. Methods of extreme tasks solution. Moscow: Nauka, 1981, 400. (In Russ.)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3