The Effect of Excess Heat Utilization on the Production Cost of Cement

Author:

Adetunji Olayide R.ORCID,Ogbuokiri Montfort C.,Dairo Olawale U.ORCID,Olatunde Olanrewaju B.ORCID,Okediran Iliyas K.

Abstract

Industrial excess heat is a largely untapped resource that has the potential for external use that would be beneficial to the cement industry. Therefore, this work studied the excess heat utilization for the optimization of production cost in a cement plant within a period of three years. The study of plant layout in the selected plant in Nigeria (Ewekoro II Cement Plant of 200 tonnes/hour) was carried out to identify areas where excess heat is generated. The temperature and static pressure of precalciner, kiln, and cyclone were taken using a temperature probe, pitot tube, digital manometer, and light-emitting diode temperature reader. These parameters were used to obtain the mass flow rate and heat transfer needed for the heat energy analysis of the system. The kiln was maintained at constant tonnage per hour through a clinker truck weighed using the weighbridge. The result showed that the heat generated from the kiln was 577,640,260 MJ/hr. through excess air draft of 780,000 m3/hr (89.4%) at 250 °C and induced draft fan of 900,000 m3/hr at 350 °C. The result showed that excess heat can be utilized in pre-heater and air quenched cooler boilers, steam turbines and auxiliaries, and generators. The total estimated heat that could be saved amounted to 344,648,250 MJ with a total annual capacity of 2.25 million tonnes of cement. A saving of over two billion dollars could be achieved in production cost per year.

Publisher

Universitas Muhammadiyah Magelang

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of Modified Conveyor Skirt Board Geometry and Their Effects on Dust Generation Prediction;2023 International Conference on Technology and Policy in Energy and Electric Power (ICT-PEP);2023-10-02

2. Skirt board design analysis to reduce build up dust on transfer chute: Case study at rembang power plant;3RD INTERNATIONAL CONFERENCE OF BIO-BASED ECONOMY FOR APPLICATION AND UTILITY;2023

3. A green heterogeneous catalyst production and characterization for biodiesel production using RSM and ANN approach;International Journal of Renewable Energy Development;2022-08-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3