Author:
Biswas Debapriya,Rajwar Ipsita
Abstract
We investigate the action of the Lie group $\text{SL}(3,\mathbb{R})$ on the two-dimensional homogeneous space. All the one-parameter subgroups (up to conjugacy) of $\text{SL}(3,\mathbb{R})$ are considered. We discuss the orbits and curvatures of these one-parameter subgroups. We also classify these subgroups in terms of fixed points.
Publisher
National Academy of Sciences of the Republic of Armenia
Reference20 articles.
1. D. Biswas, The actions of subgroups of SL2(R) for the Clifford algebra in EPH cases, Commun. Math. Anal., 11 (2011), no. 1, pp. 41-50.
2. D. Biswas, Projective coordinates and compactification in elliptic, parabolic and hyperbolic 2-D geometry, J. Appl. Anal., 18 (2012), no. 1, pp. 145-158.
3. D. Biswas, The invariance of cycles in upper half plane under Möbius transformation in EPH cases, J. Anal., Springer, 22 (2014), pp. 13-34.
4. D. Biswas and S. Dutta, Möbius action of SL (2;R) on different homogeneous spaces, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci., 92 (2022), no. 1, pp. 23-29.
5. D. Biswas and S. Dutta, Geometric invariants under the Möbius action of the group SL(2;R), Kragujev. J. Math., 45 (2021), no. 6, pp. 925-941.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献