Affiliation:
1. Yerevan State University
Abstract
For any countable set $D \subset [0,1]$, we construct a bounded measurable function $f$ such that the Fourier series of $f$ with respect to the regular general Haar system is divergent on $D$ and convergent on $[0,1]\backslash D$.
Publisher
Armenian Journal of Mathematics, Institute of Mathematics, NAS RA
Reference21 articles.
1. G. Alexits, Konvergenz probleme der orthogonalreihen, Budapest, VEB Deutscher Verlag der Wissenschafter, Berlin, 1960.
2. V. M. Bugadze, Divergence of Fourier-Haar series of bounded functions on sets of measure zero, Math. Notes 51 (1992), no. 5, pp. 437-441.
3. D. L. Burkholder, Martingale transforms, Ann. Math. Statist. 37 (1966), no. 6, pp. 1494-1504.
4. D. L. Burkholder, Boundary value problems and sharp inequalities for martingale transforms, Ann. Probab. 1} (1984), no. 3, pp. 647-702.
5. V. V. Buzdalin, On infinitely divergent Fourier trigonometric series of continuous functions, Matem. Zametki 7 (1970), no. 1, pp. 7-18.