Author:
Yengui Ihsen,Ben Amor Faten
Abstract
We propose to give an algorithm for computing the $R$-saturation of a finitely-generated submodule of a free module $E$ over a Prüfer domain $R$. To do this, we start with the local case, that is, the case where $R$ is a valuation domain. After that, we consider the global case ($R$ is a Prüfer domain) using the dynamical method. The proposed algorithm is based on an algorithm given by Ducos, Monceur and Yengui in the case $E=R[X]^m$ which is reformulated here in a more general setting in order to reach a wider audience. The last section is devoted to the case where $R$ is a Bézout domain. Particular attention is paid to the case where $R$ is a principal ideal domain ($\mathbb{Z}$ as the main example).
Publisher
National Academy of Sciences of the Republic of Armenia
Reference7 articles.
1. M. Coste, H. Lombardi, and M.-F. Roy, Dynamical method in algebra: Effective Nullstellensätze. Annals of Pure and Applied Logic 111 (2001), 203-256.
2. L. Ducos, C. Quitté, H. Lombardi, and M. Salou, Théorie algorithmique des anneaux arithmétiques, des anneaux de Prüfer et des anneaux de Dedekind. J. Algebra 281 (2004), 604-650.
3. L. Ducos, S. Monceur, and I. Yengui, Computing the $V$-saturation of finitely generated submodules of $V[X]^m$ where $V$ is a valuation domain. J. Symb. Comp. 72 (2016), 196-205.
4. A. Hadj Kacem and I. Yengui, Dynamical Gröbner bases over Dedekind rings, J. Algebra 324 (2010), 12-24.
5. G. Havas and B.S Majewski, Extended gcd calculation. Proceedings of the Twenty-sixth Southeastern International Conference on Combinatorics, Graph Theory and Computing (Boca Raton, FL, 1995). Congr. Numer. 111 (1995), 104-114.