Human Infrapatellar Fat Pad-Derived Stromal Cells have more Potent Differentiation Capacity than other Mesenchymal Cells and can be Enhanced by Hyaluronan

Author:

Ding Dah-Ching123,Wu Kun-Chi4,Chou Hsiang-Lan3,Hung Wei-Ting3,Liu Hwan-Wun25,Chu Tang-Yuan12

Affiliation:

1. Department of Obstetrics and Gynecology, Buddhist Tzu-Chi General Hospital, Tzu Chi University, Hualien, Taiwan

2. Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan

3. Stem Cell Laboratory, Department of Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan

4. Department of Orthopedics, Buddhist Tzu Chi General Hospital, Tzu Chi University, Hualien, Taiwan

5. Department of Occupational Medicine, Buddhist Tzu Chi General Hospital, Tzu Chi University, Hualien, Taiwan

Abstract

The microenvironment plays an important role in the homing in and differentiation of stem cells to repair injured tissue. Infrapatellar fat pad stromal cells (IFPSCs) are a promising source of such cells for the repair of articular injury-induced degeneration. This study investigated the chemotaxis of IFPSCs to chondrocytes and the effect of hyaluronan (HA) on the biological and regenerative properties of IFPSCs. The IFPSCs were obtained from patients undergoing arthroscopy and cultured via a standard 2-week culture protocol that yielded more than 10 million cells on passage 3. The results showed that the IFPSCs had a higher capacity for chondrogenic differentiation than mesenchymal cells from body fat, bone marrow, and Wharton's jelly of the umbilical cord. The IFPSCs cultured on 25% or 50% HA showed better osteogenic and adipogenic capabilities than those without HA or with 75% HA ( p < 0.001). Cultures of the IFPSCs on 25% HA had a fourfold increase in chondrogenic differentiation compared to cultures without HA, which was better than with 50% and 75% HA ( p < 0.05). Cell proliferation was not affected by the presence of HA. In conclusion, IFPSCs have a strong potential for chondrogenic regeneration, which can even be augmented in a 25% HA microenvironment.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3