The Potential of Endothelial Colony-Forming Cells to Improve Early Graft Loss after Intraportal Islet Transplantation

Author:

Jung Hye Seung12,Kim Min Joo1,Hong Shin Hee2,Lee Ye Jin2,Kang Shiane1,Lee Hakmo2,Chung Sung Soo2,Park Joong Shin3,Park Kyong Soo12

Affiliation:

1. Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea

2. Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, Republic of Korea

3. Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea

Abstract

Early graft loss in islet transplantation means that a large amount of donor islets is required. Endothelial cells and endothelial colony-forming cells (ECFCs) have been reported to improve instant blood-mediated inflammatory reaction (IBMIR) in vitro. In this study, we examined if ECFC-coated porcine islets would prevent early graft loss in vivo. Human ECFCs were prepared from cord blood and cocultured with islets to make composite grafts. Diabetic nude mice underwent intraportal transplantation. Blood glucose levels were monitored, and morphological examination of the grafts along with analysis of the components of IBMIR and inflammatory reaction were performed with the liver tissues. The ECFC-coated islets significantly decreased blood glucose levels immediately after transplantation compared to the uncoated islets. Composite ECFC islet grafts were observed in the liver sections, associated with a more insulin+ area compared to that of the uncoated group within 48 h after transplantation. Deposition of CD41a, C5b-9, and CD11b+ cells was also decreased in the ECFC-coated group. Expression of porcine HMGB1 and mouse TNF-α was increased in the transplantated groups compared to the sham operation group, with a trend of a decreasing trend across the uncoated group, the ECFC-coated group, and the sham group. We demonstrated that the composite ECFC porcine islets transplanted into the portal vein of nude mice improved early graft loss and IBMIR in vivo.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3