Efficacy of Multilayered Hepatocyte Sheet Transplantation for Radiation-Induced Liver Damage and Partial Hepatectomy in a Rat Model

Author:

Baimakhanov Zhassulan1,Yamanouchi Kosho1,Sakai Yusuke1,Koike Makiko1,Soyama Akihiko1,Hidaka Masaaki1,Takatsuki Mitsuhisa1,Fujita Fumihiko1,Kanetaka Kengo1,Kuroki Tamotsu1,Eguchi Susumu1

Affiliation:

1. Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki, Japan

Abstract

Although cell sheet technology has recently been developed for use in both animal experiments and in the clinical setting, it remains unclear whether transplanted hepatocyte sheets improve the liver function in vivo. Radiation-induced liver damage (RILD) combined with partial hepatectomy (PH) has been reported to suppress the proliferation of host hepatocytes and induce critical liver failure. The aim of this study was to improve the liver function in the above-mentioned diseased rat model (RILD + PH) using multilayered hepatocyte sheet transplantation. In this study, we used Fischer rats as a donor for primary hepatocytes and dermal fibroblast isolation. Cocultured multilayered hepatocyte sheets were generated by disseminating hepatocytes onto fibroblasts cultured beforehand on temperature-responsive culture dishes. Four cell sheets were transplanted into the recipient rats subcutaneously. Prior to transplantation, RILD (50 Gy) with 2/3PH was induced in the recipients. The same model was applied in the control group without transplantation. The serum was collected each week. The rats in both groups were sacrificed at 2 months after transplantation for the histological analysis. Consequently, the serum albumin concentrations were significantly higher in the transplant group than in the control group (54.3 ± 9.6 vs. 32.7 ± 5.7 mg/ml; p < 0.01) after 2 months and comparable to the serum albumin levels in the normal rats (58.1 ± 6.4 mg/ml). In addition, treatment with the transplanted sheets significantly improved the survival rate (57% vs. 22%, p < 0.05), and the hepatocyte sheets showed the storage of albumin, glycogen, and bile canaliculus structures. Some hepatocytes and fibroblasts were positive for Ki-67, and vascularization was observed around the cell sheets. Transplanted multilayered hepatocyte sheets can survive with additional proliferative activity, thereby maintaining the liver function in vivo for at least 2 months, providing metabolic support for rats with RILD.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3