Thrombospondin-1-Derived Peptide RFYVVMWK Improves the Adhesive Phenotype of CD34+ Cells from Atherosclerotic Patients with Type 2 Diabetes

Author:

Cointe Sylvie12,Rhéaume Éric3,Martel Catherine3,Blanc-Brude Olivier4,Dubé Evemie5,Sabatier Florence126,Dignat-George Françoise12,Tardif Jean-Claude3,Bonnefoy Arnaud5

Affiliation:

1. VRCM, UMR-S1076, Aix-Marseille Université, INSERM, UFR de Pharmacie, Marseille, France

2. Hematology and Vascular Biology Department, CHU La Conception, Assistance Publique-Hôpitaux de Marseille, Marseille, France

3. Department of Medicine, Université de Montréal; Montreal Heart Institute Research Center, Montreal, Canada

4. PARCC UMRs970, Hôpital Européen Georges Pompidou, Paris, France

5. CHU Sainte-Justine, University of Montreal, Montreal, Canada

6. Cell Therapy Department, CHU La Conception, Assistance Publique-Hôpitaux de Marseille, INSERM CBT-1409, Marseille, France

Abstract

CD34+ progenitor cells are growing in use for vascular repair. However, in diabetic individuals with cardiovascular diseases, these cells have dysfunctional engraftment capabilities, which compromise their use for autologous cell therapy. The thrombospondin-1-derived peptide RFYVVMWK has previously been reported to stimulate cell adhesiveness through CD47 and integrin activation pathways. Our aim was to test whether RFYVVMWK preconditioning could modulate CD34+ cell phenotype and enhance its proadhesive properties in diabetic patients. Peripheral blood mononuclear CD34+ cells isolated from 40 atherosclerotic patients with type 2 diabetes (T2D; n = 20) or without (non-T2D; n = 20) were preconditioned with 30 μM RFYVVMWK or truncated peptide RFYVVM. CD34+ cell adhesion was assessed on a vitronectin–collagen matrix and on TNF-α or IL-1β-stimulated HUVEC monolayers. Adhesion receptors, platelet/CD34+ cell conjugates, and cell viability were analyzed by flow cytometry and confocal microscopy. RFYVVMWK increased the adhesion of T2D CD34+ cells by eightfold to the vitronectin–collagen matrix ( p < 0.001) corresponding to a threefold increase compared to unstimulated non-T2D CD34+ cells. The peptide induced the formation of platelet/CD34+ conjugates and increased the expression of TSP-1, CD29, CD51/CD61, and CD62P in both T2D and non-T2D cells. However, RFYVVMWK treatment did not affect the viability/apoptosis of CD34+ progenitor cells. In conclusion, priming CD34+ cells with RFYVVMWK may enhance their vascular engraftment during autologous proangiogenic cell therapy.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3