Adipose-Derived Mesenchymal Stem Cells (ADSCs) with the Potential to Ameliorate Platelet Recovery, Enhance Megakaryopoiesis, and Inhibit Apoptosis of Bone Marrow Cells in a Mouse Model of Radiation-Induced Thrombocytopenia

Author:

Zhang Jiamin1,Zhou Shiyuan1,Zhou Yi1,Feng Feier1,Wang Qianming1,Zhu Xiaolu1,Zhao Jingzhong2,Fu Haixia1,Lv Meng1,Ai Huisheng3,Huang Xiaojun1,Zhang Xiaohui1

Affiliation:

1. Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China

2. Peking University People's Hospital, Department of Clinical Laboratory, Beijing, China

3. Department of Hematology, Affiliated Hospital to the Academy of Military Medicine Science, Beijing, China

Abstract

Substantial damage to the bone marrow can be caused by exposure to radiation, which can then develop into severe thrombocytopenia. In this study, we investigated the in vivo impact of adipose-derived mesenchymal stem cells (ADSCs) on megakaryopoiesis and platelet recovery in irradiated mice. Radiation markedly reduced peripheral blood counts. Recovery of both platelets and WBCs was better in the ADSC-treated group compared with the saline group and the fibroblast group 21 days after irradiation. A significant increase in the total CFU and MK-CFU after irradiation was observed in the ADSC group compared with the saline group and the fibroblast group. Further, the proportion of CD41+ cells in the ADSC group was significantly higher than that in the saline group and the fibroblast group. ADSC treatment significantly improved the cellularity and decreased the apoptotic cells in the bone marrow while normal fibroblasts did not. Administration of ADSCs upregulated protein expression of phosphorylated Akt and Bcl-xL, whereas the expression of Bax, a protein related to apoptosis, was significantly lower in the ADSC group. In conclusion, this study suggests that ADSCs were capable of promoting platelet recovery, improving megakaryopoiesis, and inhibiting apoptosis of bone marrow cells in irradiated mice. The antiapoptotic effect of ADSCs is likely to be mediated via the PI3K/Akt pathway. These findings may provide a scientific basis for using ADSCs as a new therapy after irradiation.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3