Cellular Evidence of Telocytes as Novel Interstitial Cells within the Magnum of Chicken Oviduct

Author:

Yang Ping1,Zhu Xudong2,Wang Lingling1,Ahmed Nisar1,Huang Yufei1,Chen Hong1,Zhang Qian1,Ullah Shakeeb1,Liu Tengfei1,Guo Dawei1,Brohi Sarfaraz Ahmed1,Chen Qiusheng1

Affiliation:

1. College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P.R. China

2. College of Sciences, Nanjing Agricultural University, Nanjing, P.R. China

Abstract

Telocytes are a novel type of interstitial cell that has been identified in many organs of mammals, but there is little information available on these cells in avian species. This study shows the latest findings associated with telocytes in the muscular layer and lamina propria of the magnum of chicken oviduct analyzed by transmission electron microscopy. Telocytes are characterized by telopodes, which are thin and long prolongations, and a small amount of cytoplasm rich with mitochondria. Spindle- or triangular-shaped telocytes were detected at various locations in the magnum. In the muscular layer, telocytes have direct connection with smooth muscle cells. The cell body of telocytes along with their long telopodes mainly exists in the interstitial space between the smooth muscle bundles, whereas large numbers of short telopodes are scattered in between the smooth muscle cells. In the lamina propria, extremely long telopodes are twisting around each other and are usually collagen embedded. Both in the lamina propria and muscular layer, telocytes have a close relationship with other cell types, such as immune cells and blood vessels. Telopodes appear with dichotomous branching alternating between the podom and podomer, forming a 3D network structure with complex homo- and heterocellular junctions. In addition, a distinctive size of the vesicles is visible around the telopodes and may be released from telopodes because of the close relation between the vesicle and telopode. All characteristics of telocytes in the magnum indicate that telocytes may play a potential, but important, role in the pathogenesis of oviduct diseases.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3