Can Magnetic Targeting of Magnetically Labeled Circulating Cells Optimize Intramyocardial Cell Retention?

Author:

Chaudeurge Aurélie12,Wilhelm Claire34,Chen-Tournoux Annabel12,Farahmand Patrick156,Bellamy Valérie12,Autret Gwennhael567,Ménager Christine8,Hagège Albert156,Larghéro Jerome89,Gazeau Florence34,Clément Olivier567,Menasché Philippe156

Affiliation:

1. INSERM U633, Laboratory of Surgical Research, Paris, France

2. Assistance Publique-Hôpitaux de Paris, Ecole de Chirurgie, Paris, France

3. Laboratoire Matière et Systèmes Complexes MSC, CNRS UMR 7057, Paris, France

4. Université Paris-Diderot, Paris, France

5. Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Department of Cardiovascular Surgery, Paris, France

6. Université Paris Descartes, Sorbonne Paris Cité, Paris, France

7. INSERM, U970, Paris Cardiovascular Research Center-PARCC, Paris, France

8. Univ Paris 06-CNRS-ESPCI Laboratoire PECSA UMR7195, Paris, France

9. University Paris Diderot, Paris, France

Abstract

Therapeutic intracavitary stem cell infusion currently suffers from poor myocardial homing. We examined whether cardiac cell retention could be enhanced by magnetic targeting of endothelial progenitor cells (EPCs) loaded with iron oxide nanoparticles. EPCs were magnetically labeled with citrate-coated iron oxide nanoparticles. Cell proliferation, migration, and CXCR4 chemokine receptor expression were assessed in different labeling conditions and no adverse effects of the magnetic label were observed. The magnetophoretic mobility of labeled EPCs was determined in vitro, with the same magnet as that subsequently used in vivo. Coronary artery occlusion was induced for 30 min in 36 rats (31 survivors), followed by 20 min of reperfusion. The rats were randomized to receive, during brief aortic cross-clamping, direct intraventricular injection of culture medium ( n = 7) or magnetically labeled EPCs ( n = 24), with ( n = 14) or without ( n = 10) subcutaneous insertion of a magnet over the chest cavity ( n = 14). The hearts were explanted 24 h later and engrafted cells were visualized by magnetic resonance imaging (MRI) of the heart at 1.5 T. Their abundance in the myocardium was also analyzed semiquantitatively by immunofluorescence, and quantitatively by real-time polymerase chain reaction (RT-PCR). Although differences in cell retention between groups failed to be statistically significant using RT-PCR quantification, due to the variability of the animal model, immunostaining showed that the average number of engrafted EPCs was significantly ten times higher with than without magnetic targeting. There was thus a consistent trend favoring the magnet-treated hearts, thereby suggesting magnetic targeting as a potentially new mean of enhancing myocardial homing of intravascularly delivered stem cells. Magnetic targeting has the potential to enhance myocardial retention of intravascularly delivered endothelial progenitor cells.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3